首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   52篇
  2021年   6篇
  2020年   4篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   15篇
  2014年   12篇
  2013年   11篇
  2012年   27篇
  2011年   23篇
  2010年   14篇
  2009年   21篇
  2008年   23篇
  2007年   22篇
  2006年   20篇
  2005年   15篇
  2004年   18篇
  2003年   24篇
  2002年   22篇
  2001年   14篇
  2000年   18篇
  1999年   12篇
  1998年   17篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   11篇
  1992年   13篇
  1991年   9篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   9篇
  1978年   5篇
  1977年   4篇
  1974年   3篇
  1972年   2篇
  1971年   6篇
  1969年   5篇
  1967年   2篇
  1966年   3篇
  1965年   2篇
排序方式: 共有517条查询结果,搜索用时 46 毫秒
141.
During retinocollicular map development, spontaneous waves of action potentials spread across the retina, correlating activity among neighboring retinal ganglion cells (RGCs). To address the role of retinal waves in topographic map development, we examined wave dynamics and retinocollicular projections in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. beta2(-/-) mice lack waves during the first postnatal week, but RGCs have high levels of uncorrelated firing. By P8, the wild-type retinocollicular projection remodels into a refined map characterized by axons of neighboring RGCs forming focal termination zones (TZs) of overlapping arbors. In contrast, in P8 beta2(-/-) mice, neighboring RGC axons form large TZs characterized by broadly distributed arbors. At P8, glutamatergic retinal waves appear in beta2(-/-) mice, and later, visually patterned activity appears, but the diffuse TZs fail to remodel. Thus, spontaneous retinal waves that correlate RGC activity are required for retinotopic map remodeling during a brief early critical period.  相似文献   
142.
143.
The alpha-amylase precursor from the bacterium Pseudoalteromonas haloplanktis possesses a propeptide at the C-terminus possibly responsible for outer membrane translocation. Unlike the predicted beta-barrel of autotransporters, this C-terminal propeptide displays a noticeable alpha-helix content. It is connected to the enzyme by a disordered linker and has no significant interaction with the catalytic domain. The microcalorimetric pattern of the precursor also demonstrates that the stability of protein domains may evolve differently.  相似文献   
144.
Most estrous cycles in cows consist of 2 or 3 waves of follicular activity. Waves of ovarian follicular development comprise the growth of dominant follicles some of which become ovulatory and the others are anovulatory. Ovarian follicular activity in cows during estrous cycle was studied with a special reference to follicular waves and the circulating concentrations of estradiol and progesterone. Transrectal ultrasound examination was carried out during 14 interovulatory intervals in 7 cows. Ovarian follicular activity was recorded together with assessment of serum estradiol and progesterone concentrations. Three-wave versus two-wave interovulatory intervals was observed in 71.4% of cows. The 3-wave interovulatory intervals differed from 2-wave intervals in: 1) earlier emergence of the dominant follicles, 2) longer in length, and 3) shorter interval from emergence to ovulation. There was a progressive increase in follicular size and estradiol production during growth phase of each wave. A drop in estradiol concentration was observed during the static phase of dominant anovulatory follicles. The size of the ovulatory follicle was always greater and produced higher estradiol compared with the anovulatory follicle. In conclusion, there was a predominance of 3-wave follicular activity that was associated with an increase in length of interovulatory intervals. A dominant anovulatory follicle during its static phase may initiate the emergence of a subsequent wave. Follicular size and estradiol concentration may have an important role in controlling follicular development and in determining whether an estrous cycle will have 2 or 3-waves.  相似文献   
145.
Human alkyladenine DNA glycosylase "flips" damaged DNA bases into its active site where excision occurs. Tyrosine 162 is inserted into the DNA helix in place of the damaged base and may assist in nucleotide flipping by "pushing" it. Mutating this DNA-intercalating Tyr to Ser reduces the DNA binding and base excision activities of alkyladenine DNA glycosylase to undetectable levels demonstrating that Tyr-162 is critical for both activities. Mutation of Tyr-162 to Phe reduces the single turnover excision rate of hypoxanthine by a factor of 4 when paired with thymine. Interestingly, when the base pairing partner for hypoxanthine is changed to difluorotoluene, which cannot hydrogen bond to hypoxanthine, single turnover excision rates increase by a factor of 2 for the wild type enzyme and about 3 to 4 for the Phe mutant. In assays with DNA substrates containing 1,N(6)-ethenoadenine, which does not form hydrogen bonds with either thymine or difluorotoluene, base excision rates for both the wild type and Phe mutant were unaffected. These results are consistent with a role for Tyr-162 in pushing the damaged base to assist in nucleotide flipping and indicate that a nucleotide flipping step may be rate-limiting for excision of hypoxanthine.  相似文献   
146.
Nitrogen metabolism and remobilization during senescence   总被引:36,自引:0,他引:36  
Senescence is a highly organized and well-regulated process. As much as 75% of total cellular nitrogen may be located in mesophyll chloroplasts of C(3)-plants. Proteolysis of chloroplast proteins begins in an early phase of senescence and the liberated amino acids can be exported to growing parts of the plant (e.g. maturing fruits). Rubisco and other stromal enzymes can be degraded in isolated chloroplasts, implying the involvement of plastidial peptide hydrolases. Whether or not ATP is required and if stromal proteins are modified (e.g. by reactive oxygen species) prior to their degradation are questions still under debate. Several proteins, in particular cysteine proteases, have been demonstrated to be specifically expressed during senescence. Their contribution to the general degradation of chloroplast proteins is unclear. The accumulation in intact cells of peptide fragments and inhibitor studies suggest that multiple degradation pathways may exist for stromal proteins and that vacuolar endopeptidases might also be involved under certain conditions. The breakdown of chlorophyll-binding proteins associated with the thylakoid membrane is less well investigated. The degradation of these proteins requires the simultaneous catabolism of chlorophylls. The breakdown of chlorophylls has been elucidated during the last decade. Interestingly, nitrogen present in chlorophyll is not exported from senescencing leaves, but remains within the cells in the form of linear tetrapyrrolic catabolites that accumulate in the vacuole. The degradation pathways for chlorophylls and chloroplast proteins are partially interconnected.  相似文献   
147.
α-Amylase from the antarctic psychrophile Alteromonas haloplanktis is synthesized at 0 ± 2°C by the wild strain. This heat-labile α-amylase folds correctly when overexpressed in Escherichia coli, providing the culture temperature is sufficiently low to avoid irreversible denaturation. In the described expression system, a compromise between enzyme stability and E. coli growth rate is reached at 18°C.Psychrophilic enzymes possess specific properties, such as high activity at low temperatures and weak thermal stability, which promise to allow the use of these enzymes as industrial biocatalysts, as biotechnological tools, or for fundamental research (6, 8, 11). For instance, substantial energy savings can be obtained if heating is not required during large-scale processes which take advantage of the efficient catalytic capacity of cold-adapted enzymes in the range 0 to 20°C. The pronounced heat lability of psychrophilic enzymes also allows their selective inactivation in a complex mixture, as illustrated by an antarctic bacterial alkaline phosphatase which is available for molecular biology research (7). Finally, psychrophilic enzymes represent the lower natural limit of protein stability (3) and are useful tools for studies in the field of protein folding.Large-scale fermentation of psychrophilic microorganisms suffers from two main drawbacks, however: the low production levels of wild strains and the prohibitive cost of growing wild strains at low temperatures. A possible alternative is to overexpress the gene coding for a psychrophilic protein in a mesophilic host for which efficient expression systems have been designed. In this context, two crucial questions remain to be solved: (i) what is the folding state of an enzyme normally synthesized at 0°C when it is expressed by the mesophilic genetic machinery at higher temperatures, and (ii) is there a temperature at which a compromise can be reached between the stability of the psychrophilic enzyme and the mesophilic growth rate? To address these questions, the heat-labile α-amylase from the antarctic psychrophile Alteromonas haloplanktis (2, 4) was expressed in Escherichia coli at various temperatures.

Construction of the expression vector and α-amylase production.

The α-amylase gene (2) was cloned downstream from the lacZ promoter in pUC12 by ligating the SmaI site of the polylinker to the HpaI site located 60 nucleotides upstream from the formylmethionine codon. This construction is devoid of the C-terminal peptide cleaved by the wild strain following α-amylase secretion. The recombinant enzyme was expressed in E. coli RR1 with the constitutive assistance of lacZ (without IPTG [isopropyl-β-d-thiogalactopyranoside] induction) in a medium containing 16 g of bactotryptone, 16 g of yeast extract, 5 g of NaCl, 2.5 g of K2HPO4, 0.1 μM CaCl2, and 100 mg of ampicillin per liter. The effect of the culture temperature on α-amylase production by E. coli is illustrated in Fig. Fig.1.1. Within the range of temperatures used, maximal enzyme production was reached below 18°C, whereas higher temperatures induced a gradual decrease of α-amylase activity in cultures. Three independent cultures were pooled for the purification of the recombinant enzymes produced at 18 and 25°C. Open in a separate windowFIG. 1Temperature dependence of α-amylase production by E. coli. Results are expressed as percent mean maximal activity recorded at 18°C.

α-Amylase purification.

The gram-negative A. haloplanktis was cultivated at 4°C, and α-amylase was purified from the culture supernatants by ion-exchange chromatography on DEAE-agarose followed by gel filtration on Sephadex G-100 and Ultrogel AcA54 as previously described (2, 4). The recombinant α-amylases were purified by the protocol developed for the wild-type enzyme except that concentration by ammonium sulfate precipitation at 70% saturation was required before the first chromatographic step. Recombinant enzyme production at 18 and 25°C ranged between 60 and 100 mg/liter of culture, which corresponds to a 10-fold improvement over production by the wild strain.

Characterization of the recombinant α-amylases.

N- and C-terminal amino acid sequences (determined on an Applied Biosystems Procise analyzer and by carboxypeptidase Y digestion, respectively) of α-amylase produced at 18 and 25°C indicated that the signal peptide is correctly cleaved in E. coli and that no additional posttranslational cleavage occurred. The isoelectric point (5.5) and the molecular mass (49,340 Da as determined from the sequence and 49,342 ± 8 Da as determined from electrospray mass spectroscopy measurements) were identical to the values recorded for the wild-type enzyme. Dynamic light scattering (DynaPro-801; DLS Instruments) also showed that the purified recombinant enzymes are homogeneous, without any evidence of aggregated forms.

Comparison of the wild-type and recombinant α-amylases.

Several properties of the wild-type enzyme produced at 4°C and the recombinant α-amylase expressed in E. coli at 18°C were compared (Table (Table1).1).

TABLE 1

Kinetic parameters, dissociation constants, and free thiol groups for the wild-type and recombinant α-amylases
α-Amylasekcat (s−1)Km (μM)kcat/Km (s−1 · μM−1)Kd
Cysteinesa (mol−1)Free thiol (mol−1)
Cl (mM)Ca (M)
Wild-type (produced at 4°C)780 ± 25174 ± 84.65.9 ± 0.22.10−880.03
Recombinant (produced at 18°C)792 ± 34168 ± 144.76.1 ± 0.22.10−880.05
Recombinant (produced at 25°C)609 ± 29186 ± 223.36.0 ± 0.32.10−880.05
Open in a separate windowaFrom the amino acid sequence. 

(i) Kinetic and ion binding parameters.

4-Nitrophenyl-α-d-maltoheptaoside-4,6-O-ethylidene (EPS) was used as the substrate in a coupled assay with α-glucosidase at 25°C. The absorption coefficient for 4-nitrophenol was 8,990 M−1 · cm−1 at 405 nm, and a stoichiometric factor of 1.25 was applied for kcat (turnover number) calculation. Dissociation constants were determined by activation kinetics following Cl or Ca2+ titration of the apoenzyme obtained by dialysis against 25 mM HEPES-NaOH (pH 7.2) and 25 mM HEPES-NaOH–5 mM EGTA (pH 8.0), respectively. The saturation curves were computer fitted by a nonlinear regression analysis of the Hill equation in the form v = kcat [I]h/Kd + [I]h where [I] is the ion concentration and h is the Hill coefficient. The free calcium concentrations were set by calcium titration in the presence of 5 mM EGTA at pH 8.0. Kinetic parameters (kcat, Km and kcat/Km) for the hydrolysis of EPS as well as dissociation constants (Kd) for calcium and chloride ions were found to be identical in the wild-type and recombinant enzymes produced at 18°C (Table (Table1).1). Owing to the stringent structural requirements for functional active site and ion binding site conformation, it can be safely concluded that the recombinant enzyme is properly folded at 18°C.

(ii) Disulfide bond integrity.

Free thiol content was determined by DTNB (5,5′-dithiobis-2-nitrobenzoic acid) titration of the unfolded enzyme in 8 M urea in order to promote −SH group accessibility. The eight cysteine residues of A. haloplanktis α-amylase are engaged in disulfide linkages (4). Thus, the lack of free sulfhydryl groups, as detected by DTNB titration of both the native and the unfolded enzymes (Table (Table1),1), indicates that the four disulfide bonds are formed in the recombinant α-amylase samples.

(iii) Conformational stability.

Fluorescence intensity of α-amylases (50 μg/ml) was recorded in 30 mM MOPS (morpholinepropanesulfonic acid)–50 mM NaCl–1 mM CaCl2 (pH 7.2) at a scanning rate of 1°C/min and at an excitation wavelength of 280 nm and an emission wavelength of 347 nm with a Perkin-Elmer LS 50 spectrofluorimeter. Raw data were corrected for thermal dependence of the fluorescence by using the slopes of the pre- and posttransition regions as described elsewhere (10). The conformational stability (ΔGN⇔U) was determined by reversible, thermally induced unfolding recorded by fluorescence. Both the wild-type and the recombinant α-amylases have melting point (Tm) values of 45 ± 0.2°C and display the same cooperative transition (Fig. (Fig.2).2). Consequently, plots of ΔG as a function of T (constructed by using the relation ΔG = −RTlnK, where K = fraction unfolded/fraction folded) are similar (Fig. (Fig.2,2, inset). These results indicate that the weak interactions stabilizing the folded state of the wild-type and recombinant α-amylases are quantitatively identical. Open in a separate windowFIG. 2Heat-induced unfolding transitions of the wild-type α-amylase (•) and the recombinant enzyme produced at 18°C (○). The fraction of protein in the unfolded state (fU) was calculated as follows: fU = (yF − y)/(yF − yU), where yF and yU are the fluorescence intensities of the native and the fully unfolded states, respectively, and y is the fluorescence intensity at a given temperature. The inset shows a plot of ΔG as a function of the temperature around the melting point (Tm), where ΔG = 0.

Expression at 25 and 37°C.

When cultures of the recombinant E. coli are carried out at 25°C, all parameters determined by activation kinetics and independent of the enzyme concentration, such as Km and Kd, remain constant, as does the free sulfhydryl content (Table (Table1).1). This indicates that the native enzyme fraction is correctly folded. By contrast, the kcat of the recombinant α-amylase is reduced by about 20%, suggesting the occurrence of a corresponding inactive fraction. When expressed at 37°C, no α-amylase activity is recorded; the recombinant heat-labile enzyme could fail to fold at this high temperature, or its denaturation rate could exceed its synthesis rate. Furthermore, Western blotting with rabbit polyclonal antibodies to α-amylase detects only trace amounts of the recombinant gene product, suggesting that the denatured enzyme is quickly degraded by the E. coli cell.

Conclusions.

We have previously shown that cloning of a psychrophilic gene in E. coli and detection of the gene product can be achieved by careful control of the culture conditions: overnight incubation at 25°C of transformed cells followed by 1 to 2 days of incubation at 4°C produced halos of substrate hydrolysis on agar plates (5). The folding state of the recombinant psychrophilic enzymes (e.g., fully or partly active, native or marginal stability, etc.), however, was unknown. The results presented here demonstrate that the genuine properties of a psychrophilic enzyme are preserved when it is expressed in a mesophilic host, providing the culture temperature is sufficiently low to allow correct folding and to avoid irreversible denaturation. In our expression system, a compromise is reached between the stability of the psychrophilic enzyme and the growth rate of the mesophilic host by cultivating the recombinant E. coli at 18°C. It should be noted that commonly used E. coli strains have different growing capacities at that temperature. We found E. coli RR1, HB101, or XL1-Blue (Stratagene) suitable for these culture conditions (the generation times are about 3 h, and stationary phase is reached after approximately 30 h), whereas E. coli DH5α grows twice as slowly at 18°C.The lack of α-amylase expression at 37°C is not an isolated case: under the same conditions, lipases and proteases (1, 5, 9) from antarctic psychrophiles were not expressed in an active form. This illustrates the general heat lability of psychrophilic enzymes, which is thought to arise from their flexible conformation, allowing high catalytic activity at temperatures close to 0°C (3).  相似文献   
148.
We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.  相似文献   
149.
The O-antigen chain from the lipopolysaccharide of Helicobacter pylori strain UA861 was determined to be composed of an elongated type 2 N - acetyllactosamine backbone, -[-->3)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-(1- ]n-->, with approximately half of the GlcNAc units carrying a terminal alpha-d-Glc residue at the O -6 position. The O-chain of H.pylori UA861 was terminated by a N -acetyllactosamine [beta-D-Gal-(1-->4)-beta-D- GlcNAc] (LacNAc) epitope and did not express terminal Lewis X or Lewis Y blood-group determinants as previously found in other H.pylori strains. The absence of terminal Lewis X and Lewis Y blood-group epitopes and the replacement of Fuc by Glc as a side chain in the O- chain of H.pylori UA861 represents yet another type of lipopolysaccharide structure from H.pylori species. These structural differences in H.pylori lipopolysaccharide molecules carry implications with regard to possible different pathogenic events between strains and respective hosts.   相似文献   
150.
Wheat plants (Triticum aestivum L., cv. Arina) growing in large pots (perforated at the bottom for controls, intact for flooding) were embedded in the field in spring. Waterlogging was initiated at anthesis and was maintained throughout the maturation period. Grain yield as well as potassium, phosphorus and magnesium contents in the shoot were decreased on flooded soil, while manganese and iron contents increased considerably. Total calcium and zinc contents per shoot remained comparable to those in controls. The reduction of potassium, phosphorus and magnesium contents by waterlogging was greatest in the grains, while manganese and iron accumulated mostly in the vegetative parts and the glumes. Zinc contents were also lowered in the grains during waterlogging due to an inhibited redistribution from the vegetative parts to the grains. Our results indicate that flooding caused not only an accumulation of manganese and iron in the shoot, but also affected the redistribution of macro- and micronutrients to the maturing gains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号