首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3854篇
  免费   292篇
  国内免费   4篇
  2024年   11篇
  2023年   33篇
  2022年   62篇
  2021年   126篇
  2020年   70篇
  2019年   87篇
  2018年   121篇
  2017年   94篇
  2016年   132篇
  2015年   219篇
  2014年   252篇
  2013年   261篇
  2012年   330篇
  2011年   277篇
  2010年   162篇
  2009年   174篇
  2008年   196篇
  2007年   165篇
  2006年   137篇
  2005年   135篇
  2004年   142篇
  2003年   121篇
  2002年   125篇
  2001年   48篇
  2000年   34篇
  1999年   35篇
  1998年   25篇
  1997年   18篇
  1996年   24篇
  1995年   22篇
  1994年   16篇
  1993年   22篇
  1992年   20篇
  1991年   18篇
  1990年   20篇
  1989年   11篇
  1988年   24篇
  1987年   14篇
  1984年   10篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   14篇
  1979年   12篇
  1978年   15篇
  1977年   10篇
  1976年   14篇
  1974年   11篇
  1973年   9篇
  1924年   8篇
排序方式: 共有4150条查询结果,搜索用时 31 毫秒
991.
The hope among policy-makers and scientists alike is that conservation strategies designed to protect biodiversity also provide direct benefits to people by protecting other vital ecosystem services. The few studies that have examined the delivery of ecosystem services by existing conservation efforts have concentrated on large, ‘wilderness’-style biodiversity reserves. However, such reserves are not realistic options for densely populated regions. Here, we provide the first analyses that compare representation of biodiversity and three other ecosystem services across several contrasting conservation strategies in a human-dominated landscape (England). We show that small protected areas and protected landscapes (restrictive zoning) deliver high carbon storage and biodiversity, while existing incentive payment (agri-environment) schemes target areas that offer little advantage over other parts of England in terms of biodiversity, carbon storage and agricultural production. A fourth ecosystem service—recreation—is under-represented by all three strategies. Our findings are encouraging as they illustrate that restrictive zoning can play a major role in protecting natural capital assets in densely populated regions. However, trade-offs exist even among the four ecosystem services we considered, suggesting that a portfolio of conservation and sustainability investments will be needed to deliver both biodiversity and the other ecosystem services demanded by society.  相似文献   
992.
993.
Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrown.  相似文献   
994.
Styryl dyes (also referred to as FM dyes) become highly fluorescent upon binding to membranes and are often used to study synaptic vesicle recycling in neurons. To date, however, no direct comparisons of the fluorescent properties, or time-resolved (millisecond) measurements of dye-membrane binding and unbinding reactions, for all members of this family of probes have been reported. Here, we compare the fluorescence intensities of each member of the FM dye family when bound to membranes. This analysis included SGC5, a new lipophilic fluorescent dye with a unique structure. Fluorescence intensities depended on the length of the lipophilic tail of each dye, with a rank order as follows: SGC5 > FM1-84 > FM1-43 > SynaptoGreen C3 > FM2-10/FM4-64/FM5-95. Stopped-flow measurements revealed that dye hydrophobicity determined the affinity and departitioning rates for dye-membrane interactions. All of the dyes dissociated from membranes on the millisecond timescale, which is orders of magnitude faster than the overall destaining rate (timescale of seconds) of these dyes from presynaptic boutons. Departitioning kinetics were faster at higher temperatures, but were unaffected by pH or cholesterol. The data reported here aid interpretation of dye-release kinetics from single synaptic vesicles, and indicate that these probes dissociate from membranes on more rapid timescales than previously appreciated.  相似文献   
995.
Biodesulfurization was monitored in a recombinant Pseudomonas putida CECT5279 strain. DszB desulfinase activity reached a sharp maximum at the early exponential phase, but it rapidly decreased at later growth phases. A model two-step resting-cell process combining sequentially P. putida cells from the late and early exponential growth phases was designed to significantly increase biodesulfurization.  相似文献   
996.
997.
The objective was to investigate the influence of corpora lutea physical and functional characteristics on pregnancy rates in bovine recipients synchronized for fixed-time embryo transfer (FTET). Crossbred (Bos taurus taurus × Bos taurus indicus) nonlactating cows and heifers (n = 259) were treated with the following protocol: 2 mg estradiol benzoate (EB) plus an intravaginal progesterone device (CIDR 1.9 g progesterone; Day 0); 400 IU equine chorionic gonadotropin (eCG; Day 5); prostaglandin F (PGF) and CIDR withdrawal (Day 8); and 1 mg EB (Day 9). Ovarian ultrasonography and blood sample collections were performed on Day 17. Of the 259 cattle initially treated, 197 (76.1%) were suitable recipients; they received a single, fresh, quality grade 1 or 2 in vivo-derived (n = 90) or in vitro-produced (n = 87) embryo on Day 17. Pregnancy rates (23 d after embryo transfer) were higher for in vivo-derived embryos than for in vitro-produced embryos (58.8% vs. 31.0%, respectively; P < 0.001). Mean (±SD) plasma progesterone (P4) concentration was higher in cattle that became pregnant than that in nonpregnant cattle (5.2 ± 5.0 vs. 3.8 ± 2.4 ng/mL; P = 0.02). Mean pixel values (71.8 ± 1.3 vs. 71.2 ± 1.1) and pixel heterogeneity (14.8 ± 0.3 vs. 14.5 ± 0.5) were similar between pregnant and nonpregnant recipients (P > 0.10). No significant relationship was detected between pregnancy outcome and plasma P4, corpus luteum area, or corpus luteum echotexture. Embryo type, however, affected the odds of pregnancy. In conclusion, corpus luteum-related traits were poor predictors of pregnancy in recipients. The type of embryo, however, was a major factor affecting pregnancy outcome.  相似文献   
998.
The Cry48Aa/Cry49Aa mosquitocidal two-component toxin was recently characterized from Bacillus sphaericus strain IAB59 and is uniquely composed of a three-domain Cry protein toxin (Cry48Aa) and a binary (Bin) toxin-like protein (Cry49Aa). Its mode of action has not been elucidated, but a remarkable feature of this protein is the high toxicity against species from the Culex complex, besides its capacity to overcome Culex resistance to the Bin toxin, the major insecticidal factor in B. sphaericus-based larvicides. The goal of this work was to investigate the ultrastructural effects of Cry48Aa/Cry49Aa on midgut cells of Bin-toxin-susceptible and -resistant Culex quinquefasciatus larvae. The major cytopathological effects observed after Cry48Aa/Cry49Aa treatment were intense mitochondrial vacuolation, breakdown of endoplasmic reticulum, production of cytoplasmic vacuoles, and microvillus disruption. These effects were similar in Bin-toxin-susceptible and -resistant larvae and demonstrated that Cry48Aa/Cry49Aa toxin interacts with and displays toxic effects on cells lacking receptors for the Bin toxin, while B. sphaericus IAB59-resistant larvae did not show mortality after treatment with Cry48Aa/Cry49Aa toxin. The cytopathological alterations in Bin-toxin-resistant larvae provoked by Cry48Aa/Cry49Aa treatment were similar to those observed when larvae were exposed to a synergistic mixture of Bin/Cry11Aa toxins. Such effects seemed to result from a combined action of Cry-like and Bin-like toxins. The complex effects caused by Cry48Aa/Cry49Aa provide evidence for the potential of these toxins as active ingredients of a new generation of biolarvicides that conjugate insecticidal factors with distinct sites of action, in order to manage mosquito resistance.Bacillus sphaericus is considered an important entomopathogen due to its capacity to produce insecticidal proteins with specific action against mosquitoes (Diptera: Culicidae). The binary (Bin) toxin, which is produced during bacterial sporulation and deposited in parasporal crystalline inclusions, is the most important larvicidal factor. Other proteins characterized, such as mosquitocidal toxins (Mtx proteins), can be produced during vegetative growth, and although these proteins may have larvicidal potential, they play a minor role in the toxicity of the native strains since they are produced by vegetative cells and are degraded by B. sphaericus proteinases (20, 30), and do not form components of the spore-crystal preparations that are used in control programs. Recently, a new two-component toxin was characterized from B. sphaericus strain IAB59. This is formed by the proteins Cry48Aa (135 kDa) and Cry49Aa (53 kDa), which are produced as crystalline inclusions (13). The toxin has a unique composition since the Cry48Aa component belongs to the three-domain family of Cry proteins with 30% similarity to the mosquitocidal Cry4Aa protein from Bacillus thuringiensis serovar israelensis, while Cry49Aa is one of the Bin-toxin-like proteins, a family that comprises the Bin toxin from B. sphaericus, in addition to the Cry36 and Cry35 proteins from B. thuringiensis (9, 13).Cry48Aa/Cry49Aa is considered a two-component toxin because neither component shows toxicity alone, whereas both can act in synergy and the optimum level of toxicity to Culex species is achieved when the two are present at an equimolar ratio. The 50% lethal concentration for third-instar larvae equates to 15.9 ng/ml Cry48Aa and 6.3 ng/ml Cry49Aa of purified toxins, which is a level of toxicity comparable to that of the Bin toxin (13). However, in contrast to the Bin toxin, which is naturally produced in an equimolar ratio, Cry48Aa production is low in native strains and does not confer high toxicity (13). The initial steps of the mode of action of Bin and Cry48Aa/Cry49Aa crystals are similar and comprise the ingestion of crystals, solubilization under alkaline pH, and activation of protoxins into toxins by midgut proteases. After processing, Bin toxin recognizes and binds to specific receptors in the midgut of Bin-toxin-susceptible species through its subunit BinB (51 kDa), while the component BinA (42 kDa) confers toxicity and is likely to form pores in the cell membrane (7, 25). The membrane-bound receptors of Bin toxin on the midgut of Culex quinquefasciatus larvae, Cqm1, were characterized as 60-kDa α-glucosidases (24). The mode of action of Cry48Aa/Cry49Aa is still unknown, but a remarkable feature of this new two-component toxin is the capacity to overcome C. quinquefasciatus resistance to the Bin toxin (13, 19, 21). Resistance of Culex larvae to the Bin-toxin-based larvicides often relies on the absence of functional Cqm1 receptors in the midgut (19, 24, 26). As a consequence, toxins with a distinct mode of action, such as Cry48Aa/Cry49Aa as well as B. thuringiensis serovar israelensis toxins (Cry11Aa, Cry4Aa, Cry4Ba, and Cyt1Aa), do not experience cross-resistance in the Bin-toxin-resistant larvae (12, 21, 32). Such toxins can play a strategic role in the management of resistance, and the major goal of this study was to investigate the ultrastructural effects of the Cry48Aa/Cry49Aa toxin on Bin-toxin-susceptible and -resistant C. quinquefasciatus larvae and to compare these with the effects of a synergistic mixture of Bin/Cry11Aa used to overcome Bin toxin resistance.  相似文献   
999.
Viruses acquire their envelope by budding from a host cell membrane, but viral lipid composition may differ from that of the budding membrane. We have previously reported that the HIV-1 membrane is highly enriched in cholesterol, sphingolipids, and other raft lipids, suggesting that the virus may bud from pre-existing or virus-induced lipid rafts. Here, we employed the environmentally sensitive fluorescent dye Laurdan to study the membrane lateral structure of HIV-1 derived from different cell lines. Differences in viral membrane order detected by Laurdan staining were shown by mass spectrometry to be due to differences in lipid composition. Isogenic viruses from two different cell lines were both strongly enriched in raft lipids and displayed a liquid-ordered membrane, but these effects were significantly more pronounced for HIV-1 from the T-cell line MT-4 compared with virus from 293T cells. Host-dependent differences in the lipidomes predominantly affected the ratio of sphingomyelins (including dihydrosphingomyelin) to phosphatidylcholine, whereas cholesterol contents were similar. Accordingly, treatment of infectious HIV-1 with the sphingomyelin-binding toxins Equinatoxin-II or lysenin showed differential inhibition of infectivity. Liposomes consisting of lipids that had been extracted from viral particles exhibited slightly less liquid order than the respective viral membranes, which is likely to be due to absence of membrane proteins and to loss of lipid asymmetry. Synthetic liposomes consisting of a quaternary lipid mixture emulating the viral lipids showed a liquid order similar to liposomes derived from virion lipids. Thus, Laurdan staining represents a rapid and quantitative method to probe viral membrane liquid order and may prove useful in the search for lipid active drugs.HIV-13 is an enveloped retrovirus, which acquires its lipid envelope by budding from the plasma membrane of the infected host cell. Several reports have shown that the viral membrane is enriched in sphingomyelin (SM), including the unusual sphingolipid dihydrosphingomyelin (DHSM) and collectively referred to as sphingomyelins (SMs), glycosphingolipids, cholesterol (CHOL), saturated phosphoglycerolipids and phosphoinositides (14). Moreover the CHOL/phospholipid and protein/lipid ratios of the HIV-1 membrane are high, corresponding to a highly ordered membrane, and are presumed to be different from the overall host cell plasma membrane. Accordingly, the HIV-1 envelope has been considered to be a large raft-like membrane microdomain (3). This is in line with previous reports describing enrichment of raft markers in the HIV-1 membrane and its sensitivity to CHOL-depleting agents (59). Furthermore, HIV-1 glycoproteins have been suggested to localize within membrane rafts due to palmitoylation of two cysteines (10), and the main structural Gag protein has been shown to rapidly relocalize to detergent-resistant membranes after initial membrane binding (6).Membrane microdomains are dynamic assemblies resulting from the lateral interaction of lipids and proteins. Two phases coexist in the plasma membrane: the liquid-ordered phase (lo), mainly composed of CHOL and sphingolipids (SPLs), and the liquid disordered phase (ld), mainly composed of glycerophospholipids (1113). In the activated state, lo microdomains can coalesce and serve as platforms for membrane trafficking, signaling, and virus budding (14, 15). The first method to biochemically enrich membrane rafts was the purification of detergent-resistant membranes, based on their resistance to extraction with non-ionic detergent at 4 °C (16). However, this and other methods based on antibody or cholera toxin binding may lead to artificial aggregation of membrane microdomains and thus do not necessarily represent their native state (17, 18). For these reasons and because the association and dissociation of membrane microdomains appears to occur on a rapid time-scale and the raft size is too small to be optically resolved, the raft concept remains controversial. However, the determination of the HIV-1 lipidome, a native membrane purified without any detergent, has provided strong evidence for the existence of these microdomains (3).Fluorescent lipid analogs that partition preferentially into a specialized lipid phase could be an attractive tool to study membrane microdomains. However, partitioning of such dyes mainly depends on the local chemical environment and not on the phase state of the membrane (1921). In contrast, Laurdan (6-dodecanoyl-2-dimethylaminonapthalene) is a lipophilic dye that binds to membranes independent of their phase state but reports the phase state by a change in its fluorescence emission (20). Laurdan exhibits a blue shift in its emission spectrum with increasing membrane condensation. This is caused by an alteration in the dipole moment of the probe as a consequence of exclusion of water molecules from the lipid bilayer. Thus, excitation of membrane bound Laurdan leads to two emission maxima representing differences in membrane lateral structure. Quantification of membrane order is achieved by computing the Generalized Polarization (GP) value, which is defined as normalized intensity ratio of the two emission channels. GP values range from +1 (most condensed) to −1 (most fluid). They are not biased by probe concentration, membrane ruffles, and surface modifications, such as lipoprotein binding. Furthermore, there is no preferential interaction with a specific lipid, fatty acid, or head group (20, 21). GP value correspondence to different lipid phases was estimated using liposomes with a composition similar to that of cellular membranes (22, 23). Using an equimolar mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine, CHOL, and SM as an lo membrane, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as an ld and solid ordered (so) phase, GP values below +0.25 were shown to correspond to the ld phase, GP values between +0.25 and +0.5 to the lo phase, and GP values above +0.5 to the so phase (22, 23).Laurdan has been extensively used to characterize domain formation and lateral lipid segregation in model membranes composed of different phospholipid mixtures or lipids extracted from cellular membranes (19, 2225). It has also been used to study the membrane structure in living cells. Gaus and coworkers observed lo domains enriched on membrane protrusions (filopodia), adhesion points, and cell-cell contacts (26). They also used Laurdan to address the physical properties of the plasma membrane around the T-cell receptor in activated T cells, observing larger and more stably ordered membrane domains at sites of T-cell activation (27). Quantitative determination of cellular plasma membrane order by fluorescence spectroscopy is complicated due to the rapid internalization and redistribution of the probes to other cellular membranes, making it difficult to interpret the fluorescence measurements over the whole cell. This problem is not encountered in purified virus particles, because they contain only a single membrane. We therefore developed an assay to study viral membrane lateral structure by fluorescence spectroscopy. For this purpose, isogenic HIV-1 particles were produced in two different cell lines, and their GP profiles were determined. In parallel, the lipid constituents were quantified by mass spectrometry. The viral membrane displayed a lo structure in both cases, but this was more prominent for the virus derived from the T-cell line MT-4 compared with virus derived from 293T cells. The validity of this result was supported by comparing the lipidome of the two viruses, which revealed a significantly higher SMs/phosphatidylcholine (PC) ratio for the MT-4-derived virus. Accordingly, treatment with SM-binding toxins inactivated MT-4-derived virus more efficiently than 293T-derived virus, whereas both viruses exhibited similar infectivities before treatment. The reported approach allows rapid determination of differences in viral membrane order, permitting screening for compounds that perturb lo domains, which may act as antivirals of a novel type.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号