首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3368篇
  免费   272篇
  国内免费   4篇
  2023年   26篇
  2022年   34篇
  2021年   110篇
  2020年   57篇
  2019年   81篇
  2018年   97篇
  2017年   76篇
  2016年   108篇
  2015年   190篇
  2014年   222篇
  2013年   225篇
  2012年   294篇
  2011年   239篇
  2010年   144篇
  2009年   150篇
  2008年   170篇
  2007年   146篇
  2006年   127篇
  2005年   120篇
  2004年   122篇
  2003年   108篇
  2002年   113篇
  2001年   41篇
  2000年   26篇
  1999年   34篇
  1998年   23篇
  1997年   16篇
  1996年   23篇
  1995年   21篇
  1994年   15篇
  1993年   21篇
  1992年   18篇
  1991年   18篇
  1990年   19篇
  1989年   10篇
  1988年   24篇
  1987年   14篇
  1984年   10篇
  1983年   15篇
  1982年   13篇
  1981年   14篇
  1980年   14篇
  1979年   10篇
  1978年   15篇
  1977年   9篇
  1976年   14篇
  1975年   8篇
  1974年   10篇
  1973年   9篇
  1924年   8篇
排序方式: 共有3644条查询结果,搜索用时 31 毫秒
991.
Phosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N",N"'-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used. DAG kinase was found to be the dominant producer of PA that was subsequently metabolized to DGPP. A minor but significant role for phospholipase D could only be detected when xylanase was used as elicitor. Since PA formation was correlated with the high turnover of polyphosphoinositides, we hypothesize that elicitor treatment activates phospholipase C to produce DAG, which in turn acts as substrate for DAG kinase. The potential roles of PA and DGPP in plant defense signaling are discussed.  相似文献   
992.
We have synthesised and examined the enzymatic incorporation properties of the 5'-triphosphates of 2'-deoxyribosyl pyrrole 3-monocarboxamide (dMTP) and 2'-deoxyribosyl pyrrole 3,4-dicarboxamide (dDTP). These analogues we had hoped would behave as ambivalent base analogues in that they can present two alternative hydrogen-bonding faces either by rotation about the carboxamide group or about the glycosidic bond. The two pyrrole derivatives, dMTP and dDTP, exhibit a preference for incorporation with Klenow polymerase. They are preferentially incorporated as either A or C.  相似文献   
993.
The present study examined the effect of UV andphotosynthetically active radiation (PAR) onphotoinhibition and recovery in the Phaeophyte Macrocystis pyrifera, the Rhodophyte Chondruscrispus and the Chlorophyte Ulva lactuca underoutdoor culture conditions. There was an increase inphotoinhibition as a consequence of high exposure toUV-B radiation in M. pyrifera, however, highlevels of PAR accounted for most of thephotoinhibition in C. crispus and U.lactuca. Photodamage by UV-A, UV-B and PAR wascompletely repaired within 5 h and effective quantumyield reached pretreatment values in the three speciesstudied. Species were less susceptible tophotoinhibition after being incubated for 5 d underhigh exposures of natural irradiance suggesting aphotoadaptive process. The recovery of the effectivequantum yield was impaired by long exposure to highlevels of UV-B in C. crispus and UV-A, UV-B andPAR in M. pyrifera. This suggests a differentkind of damage by UV-A and PAR radiation, one to thephotosynthetic apparatus and another which affects therepair mechanism of some species. There was anincrease in UV-absorption ( 330 nm) in M. pyrifera and C. crispus within four days ofthe initiation of the experiment suggesting that thesespecies photoprotect their photosynthetic system whenexposed to elevated UV and PAR levels.  相似文献   
994.
Nicotiana tabacum plants were transformed with the cDNA of barley trypsin inhibitor BTI-CMe under the control of the 35S CaMV promoter. Although the transgene was expressed and the protein was active in the homozygous lines selected, growth of Spodoptera exigua (Lepidoptera: Noctuidae) larvae reared on transgenic plants was not affected. The protease activity in larval midgut extracts after 2 days feeding on transformed tobacco leaves from the highest expressing plant showed a reduction of 25% in the trypsin-like activity compared to that from insects fed on non-transformed controls. The susceptibility of digestive serine-proteases to inhibition by BTI-CMe was confirmed by activity staining gels. This decrease was compensated with a significant induction of leucine aminopeptidase-like and carboxipeptidase A-like activities, whilechymotrypsin-, elastase-, and carboxipeptidase B-like proteases were not affected.  相似文献   
995.
Brain amyloid composed of the approximately 40-amino-acid human beta-amyloid peptide A beta is integral to Alzheimer's disease pathology. To probe the importance of a conformational transition in Abeta during amyloid growth, we synthesized and examined the solution conformation and amyloid deposition activity of A beta congeners designed to have similar solution structures but to vary substantially in their barriers to conformational transition. Although all these peptides adopt similar solution conformations, a covalently restricted Abeta congener designed to have a very high barrier to conformational rearrangement was inactive, while a peptide designed to have a reduced barrier to conformational transition displayed an enhanced deposition rate relative to wild-type A beta. The hyperactive peptide, which is linked to a heritable A beta amyloidosis characterized by massive amyloid deposition at an early age, displayed a reduced activation barrier to deposition consistent with a larger difference in activation entropy than in activation enthalpy relative to wild-type A beta. These results suggest that in Alzheimer's disease, as in the prion diseases, a conformational transition in the depositing peptide is essential for the conversion of soluble monomer to insoluble amyloid, and alterations in the activation barrier to this transition affect amyloidogenicity and directly contribute to human disease.  相似文献   
996.
The transfer of theF episome fromEscherichia coli K 12 toE. coli B,Paracolobacter andKlebsiella was studied. The frequency of transfer of the episomal markers toE. coli B was very low. The large majority ofE. coli B cells which had received the episomal markerslac + orgal + were F, which indicates that the episomal markers were stably integrated on the chromosome. Recombinants from K 12 F+ × B F crosses were mostly F. These results suggest that the multiplication of theF-factor ofE. coli K 12 is restricted inE. coli B. The transfer of theF-lac + Ad + episome fromE. coli K 12 toParacolobacter andKlebsiella strains was in most cases only possible when donor and acceptor strain were plated together on selective media. Stable incorporation of episomal markers was also found withParacolobacter coliforme. Paracolobacter aerogenoides andKlebsiella aerogenes strains could be infected withF-lac + Ad +. The episomal markers were not incorporated and the episomes were easily lost, which indicates that these strains contained theF factor in the autonomous state.  相似文献   
997.
Felix T. Hong  David Mauzerall 《BBA》1972,275(3):479-484
It is shown that the photoemf in a pigmented membrane is specific to the magnesium-porphyrin conductance channel. A null current method was devised to measure directly the voltage dependence of the photoemf and the magnesium-porphyrin conductance. Their voltage dependence is in agreement with the hypothesis that the magnesium-porphyrin cation is the majority carrier  相似文献   
998.
Inhibition of protein kinase activity is a focus of intense drug discovery efforts in several therapeutic areas. Major challenges facing the field include understanding of the factors determining the selectivity of kinase inhibitors and the development of compounds with the desired selectivity profile. Here, we report the analysis of sequence variability among high and low affinity targets of eight different small molecule kinase inhibitors (BIRB796, Tarceva, NU6102, Gleevec, SB203580, balanol, H89, PP1). It is observed that all high affinity targets of each inhibitor are found among a relatively small number of kinases, which have similar residues at the specific positions important for binding. The findings are highly statistically significant, and allow one to exclude the majority of kinases in a genome from a list of likely targets for an inhibitor. The findings have implications for the design of novel inhibitors with a desired selectivity profile (e.g. targeted at multiple kinases), the discovery of new targets for kinase inhibitor drugs, comparative analysis of different in vivo models, and the design of "a-la-carte" chemical libraries tailored for individual kinases.  相似文献   
999.
A facile preparation of 2-aminomethyl-2-tricyclo[3.3.1.1(1,7)]decaneacetic acid hydrochloride 5 (AdGABA) is described. The synthesis of AdGABA involves the hydrogenation of 2-cyano-2-tricyclo[3.3.1.1(1,7)]decaneacetic acid 11, which was synthesized by two different synthetic routes. AdGABA was found to antagonize the pentylenetetrazole (PTZ) and semicarbazide (SCZ) induced tonic convulsions and exhibits analgesic activity in the hot plate test on mice. Although its mechanism of action is quite similar to that proposed previously for gabapentin (interaction with the alpha2delta subunit of the voltage gated Ca2+ channels), further studies were undertaken in order to clarify the precise mechanism of the anticonvulsant and analgesic effects of AdGABA on a molecular level.  相似文献   
1000.
J-domain cochaperones confer functional specificity to their heat shock protein (HSP)70 partner by recruiting it to specific substrate proteins. To gain insight into the functions of plastidic HSP70s, we searched in Chlamydomonas databases for expressed sequence tags that potentially encode chloroplast-targeted J-domain cochaperones. Two such cDNAs were found: the encoded J-domain proteins were named chloroplast DnaJ homolog 1 and 2 (CDJ1 and CDJ2). CDJ2 was shown to interact with a approximately 28-kDa protein that by mass spectrometry was identified as the vesicle-inducing protein in plastids 1 (VIPP1). In fractionation experiments, CDJ2 was detected almost exclusively in the stroma, whereas VIPP1 was found in low-density membranes, thylakoids, and in the stroma. Coimmunoprecipitation and mass spectrometry analyses identified stromal HSP70B as the major protein interacting with soluble VIPP1, and, as confirmed by cross-linking data, as chaperone partner of CDJ2. In blue native-PAGE of soluble cell extracts, CDJ2 and VIPP1 comigrated in complexes of >669, approximately 150, and perhaps approximately 300 kDa. Our data suggest that CDJ2, presumably via coiled-coil interactions, binds to VIPP1 and presents it to HSP70B in the ATP state. Our findings and the previously reported requirement of VIPP1 for the biogenesis of thylakoid membranes point to a role for the HSP70B/CDJ2 chaperone pair in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号