首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3396篇
  免费   270篇
  国内免费   5篇
  3671篇
  2024年   10篇
  2023年   27篇
  2022年   49篇
  2021年   110篇
  2020年   57篇
  2019年   82篇
  2018年   97篇
  2017年   76篇
  2016年   108篇
  2015年   190篇
  2014年   223篇
  2013年   225篇
  2012年   294篇
  2011年   239篇
  2010年   144篇
  2009年   150篇
  2008年   170篇
  2007年   146篇
  2006年   127篇
  2005年   120篇
  2004年   122篇
  2003年   108篇
  2002年   113篇
  2001年   41篇
  2000年   27篇
  1999年   34篇
  1998年   23篇
  1997年   16篇
  1996年   23篇
  1995年   21篇
  1994年   15篇
  1993年   21篇
  1992年   19篇
  1991年   18篇
  1990年   19篇
  1989年   10篇
  1988年   24篇
  1987年   14篇
  1984年   10篇
  1983年   15篇
  1982年   13篇
  1981年   14篇
  1980年   14篇
  1979年   10篇
  1978年   15篇
  1977年   9篇
  1976年   14篇
  1974年   10篇
  1973年   9篇
  1924年   8篇
排序方式: 共有3671条查询结果,搜索用时 0 毫秒
81.
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.Motoneurons are extremely extended neurons that mediate the control of all muscle types by the central nervous system. Therefore, diseases involving progressive motoneuron degeneration such as amyotrophic lateral sclerosis (ALS)1 (OMIM: 105400) or spinal muscle atrophy (OMIM: 253300) are particularly devastating and generally fatal disorders. Today, ALS is believed to form a phenotypic continuum with the disease entity frontotemporal lobe degeneration (OMIM: 600274) (1, 2). About 10% of ALS cases are known to be inherited, but the vast majority are considered sporadic. The number of inherited cases might be underestimated because of incomplete family histories, non-paternity, early death of family members, or incomplete penetrance (3).Mutations in several genes have been reported for the familial form, including in Sod1 (4), Als2 (5), Setx (6), Vapb (7), Tardbp (8, 9), Fus/Tls (10, 11), Vcp (12), Pfn1 (13), and several others (reviewed in Ref. 14). The most frequent genetic cause of inherited ALS was recently shown to be a hexanucleotide repeat expansion in an intron of a gene of unknown function called C9orf72 (1517). Based on the spectrum of known mutations, several disease mechanisms for ALS have been proposed, including dysfunction of protein folding, axonal transport, RNA splicing, and metabolism (reviewed in Refs. 14, 18, and 19). Despite intensive research, it is still unclear whether a main common molecular pathway or mechanism underlies motoneuron degeneration in ALS and frontotemporal lobe degeneration. Spinal muscle atrophy is caused by homozygous mutations or deletions in the survival of motor neuron gene (Smn1) that presumably impair the RNA metabolism through diminished functionality of the Smn1 gene product (20). Over recent decades several model systems have been established to investigate ALS (21). These include transgenic animal models such as mouse (22), drosophila (23), and zebrafish (24). In cell-based studies, primary motoneurons cultured from rodent embryos (25) or motoneuron-like cell lines are employed. Primary cells are considered to more closely mimic the in vivo situation, but they are more challenging to establish and maintain. In contrast, the degree of functional relevance of cell lines can be difficult to establish, but they can be propagated without limitation and are well suited for high-throughput analysis. In particular, the spinal cord neuron–neuroblastoma hybrid cell line NSC-34 (26) and the mouse neuroblastoma cell line N2a (27) are widely used not only to assess motoneuron function, but also to study disease mechanisms in motoneurons (28, 29).As proteins are the functional actors in cells, proteomics should be able to make important contributions to the characterization and evaluation of cellular models. In particular, by identifying and quantifying the expressed proteins and bioinformatically interpreting the results, one can obtain enough information to infer functional differences. Our laboratory has previously shown proof of concept of such an approach by comparing the expression levels of about 4,000 proteins between primary hepatocytes and a hepatoma cell line (30). Very recently, mass-spectrometry-based proteomics has achieved sufficient depth and accuracy to quantify almost the entire proteome of mammalian cell lines (3133). Furthermore, new instrumentation and algorithms now make it possible to perform label-free quantification between multiple cellular systems and with an accuracy previously associated only with stable isotope labeling techniques (34, 35).To evaluate the suitability of motoneuron-like cell lines as cellular model systems for research on ALS and related disorders, we characterized the proteomes of two widely used cell lines, NSC-34 and N2a, and compared them with the proteomes of mouse primary motoneurons and non-neuronal control cell lines. To generate primary motoneurons, we employed a recently described culturing system that makes it possible to isolate highly enriched motoneuron populations in less than 8 h (25). We identified more than 10,000 proteins and investigated differences in quantitative levels of individual neuron-associated proteins and pathways related to motoneuron function and disease mechanisms.  相似文献   
82.
Empirical evidence from several animal groups suggests sex chromosomes disproportionately contribute to reproductive isolation. This effect may be enhanced when sex chromosomes are associated with turnover of sex determination systems resulting from structural rearrangements to the chromosomes. We investigated these predictions in the dioecious plant Rumex hastatulus, which is composed of populations of two different sex chromosome cytotypes caused by an X-autosome fusion. Using population genomic analyses, we investigated the demographic history of R. hastatulus and explored the contributions of ancestral and neo-sex chromosomes to population genetic divergence. Our study revealed that the cytotypes represent genetically divergent populations with evidence for historical but not contemporary gene flow between them. In agreement with classical predictions, we found that the ancestral X chromosome was disproportionately divergent compared with the rest of the genome. Excess differentiation was also observed on the Y chromosome, even when we used measures of differentiation that control for differences in effective population size. Our estimates of the timing of the origin of neo-sex chromosomes in R. hastatulus are coincident with cessation of gene flow, suggesting that the chromosomal fusion event that gave rise to the origin of the XYY cytotype may have also contributed to reproductive isolation.  相似文献   
83.
Matthias Albrecht  David Kleijn  Neal M. Williams  Matthias Tschumi  Brett R. Blaauw  Riccardo Bommarco  Alistair J. Campbell  Matteo Dainese  Francis A. Drummond  Martin H. Entling  Dominik Ganser  G. Arjen de Groot  Dave Goulson  Heather Grab  Hannah Hamilton  Felix Herzog  Rufus Isaacs  Katja Jacot  Philippe Jeanneret  Mattias Jonsson  Eva Knop  Claire Kremen  Douglas A. Landis  Gregory M. Loeb  Lorenzo Marini  Megan McKerchar  Lora Morandin  Sonja C. Pfister  Simon G. Potts  Maj Rundlf  Hillary Sardias  Amber Sciligo  Carsten Thies  Teja Tscharntke  Eric Venturini  Eve Veromann  Ines M.G. Vollhardt  Felix Wckers  Kimiora Ward  Andrew Wilby  Megan Woltz  Steve Wratten  Louis Sutter 《Ecology letters》2020,23(10):1488-1498
Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.  相似文献   
84.
85.
Frequency and amplitude of temperature oscillations can profoundly affect structure and function of ecosystems. Unless the rate of a biological process changes linearly within the range of these fluctuations, the cumulative effect of temperature differs from the effect measured at the average temperature (Jensen's inequality). Here, we measured numbers and types of spores released by aquatic hyphomycetes from oak and alder leaves that had been exposed in a Portuguese stream for between 7 and 94 days. Recovered leaves were incubated at four temperatures between 5 and 20 °C. Over this range, the sporulation response to temperature was decelerating, with an estimated optimum around 12.5 °C. Assuming a linear response, therefore, overestimates spore release from decaying leaves. The calculated discrepancy was more pronounced with recalcitrant oak leaves (greater toughness, phenolics concentration, lower N and P concentration than alder), and reached 26.6 % when temperature was assumed to oscillate between 1 and 9 °C, rather than remaining constant at 5 °C. The maximum fluctuation of water temperature over 48 h during the field experiment was approximately 3 °C, which would result in a discrepancy of up to 6 %. The composition of the fungal community (assessed by species identification of released spores) was significantly influenced by the state of decomposition, but not by leaf species or temperature. When quantifying the potential impact of global change on aquatic fungal communities, the average increase as well as fluctuations of the temperature have to be considered.  相似文献   
86.
The control by bone metabolism of the blood calcium level in young rats may be described in terms of a regulator-type system. The model presented here comprises a feedback loop involving only a proportional control in thyroparathyroidectomized, and a combination of proportional and integral controls in normal animals. It accounts for the variations observed when the system was subjected to a variety of experimental constraints. The implications, limitations, and possible extensions of the model are discussed.  相似文献   
87.
Sedentary aging leads to increased cardiovascular stiffening, which can be ameliorated by sufficient amounts of lifelong exercise training. An even more extreme form of cardiovascular stiffening can be seen in heart failure with preserved ejection fraction (HFpEF), which comprises ~40~50% of elderly patients diagnosed with congestive heart failure. There are two major interrelated hypotheses proposed to explain heart failure in these patients: 1) increased left ventricular (LV) diastolic stiffness and 2) increased arterial stiffening. The beat-to-beat dynamic Starling mechanism, which is impaired with healthy human aging, reflects the interaction between ventricular and arterial stiffness and thus may provide a link between these two mechanisms underlying HFpEF. Spectral transfer function analysis was applied between beat-to-beat changes in LV end-diastolic pressure (LVEDP; estimated from pulmonary artery diastolic pressure with a right heart catheter) and stroke volume (SV) index. The dynamic Starling mechanism (transfer function gain between LVEDP and the SV index) was impaired in HFpEF patients (n = 10) compared with healthy age-matched controls (n = 12) (HFpEF: 0.23 ± 0.10 ml·m?2·mmHg?1 and control: 0.37 ± 0.11 ml·m?2·mmHg?1, means ± SD, P = 0.008). There was also a markedly increased (3-fold) fluctuation of LV filling pressures (power spectral density of LVEDP) in HFpEF patients, which may predispose to pulmonary edema due to intermittent exposure to higher pulmonary capillary pressure (HFpEF: 12.2 ± 10.4 mmHg2 and control: 3.8 ± 2.9 mmHg2, P = 0.014). An impaired dynamic Starling mechanism, even more extreme than that observed with healthy aging, is associated with marked breath-by-breath LVEDP variability and may reflect advanced ventricular and arterial stiffness in HFpEF, possibly contributing to reduced forward output and pulmonary congestion.  相似文献   
88.
89.
90.
A 36-kDa 1-aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase, which converts the ethylene precursor ACC into the conjugated derivative malonyl-ACC (MACC), has been isolated from etiolated mung bean ( Vigna radiata ) hypocotyls, and partially purified in a four-step procedure. The enzyme is stimulated about 7-fold by 100 m M K+ salts or 0.5 m M Co2+ salts, and is inhibited competitively by D-phenylalanine (Ki= 1.3 m M ) and non competitively by CoASH (0.3 m M ). Beside malonyl-CoA, it is capable to use succinyl-CoA as an acyl donor. The 36-kDa enzyme described here exhibits a lower optimum temperature (40°C) and a 7- or 3-fold lower apparent Km for ACC (68 μ M ) and malonyl-CoA (74 μ M ), respectively, when compared with its 55 kDa isoform already isolated from the same plant material. This data support the idea that several isoforms of ACC N-malonyltransferase exist in plants. These isoforms may play a differential role in regulating the availability of ACC, and consequently the rate of ethylene production, as well as detoxifying cells from D-amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号