首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3384篇
  免费   272篇
  国内免费   4篇
  2023年   26篇
  2022年   22篇
  2021年   110篇
  2020年   57篇
  2019年   81篇
  2018年   97篇
  2017年   76篇
  2016年   108篇
  2015年   190篇
  2014年   222篇
  2013年   225篇
  2012年   294篇
  2011年   240篇
  2010年   146篇
  2009年   151篇
  2008年   170篇
  2007年   146篇
  2006年   129篇
  2005年   120篇
  2004年   122篇
  2003年   109篇
  2002年   113篇
  2001年   41篇
  2000年   27篇
  1999年   34篇
  1998年   23篇
  1997年   16篇
  1996年   23篇
  1995年   21篇
  1994年   15篇
  1993年   21篇
  1992年   18篇
  1991年   18篇
  1990年   21篇
  1989年   14篇
  1988年   27篇
  1987年   15篇
  1984年   12篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   16篇
  1979年   11篇
  1978年   17篇
  1977年   9篇
  1976年   14篇
  1975年   8篇
  1974年   10篇
  1973年   9篇
  1924年   8篇
排序方式: 共有3660条查询结果,搜索用时 15 毫秒
91.
Understanding what environmental drivers control the position of the alpine tree line is important for refining our understanding of plant stress and tree development, as well as for climate change studies. However, monitoring the location of the tree line position and potential movement is difficult due to cost and technical challenges, as well as a lack of a clear boundary. Advanced remote sensing technologies such as Light Detection and Ranging (LiDAR) offer significant potential to map short individual tree crowns within the transition zone despite the lack of predictive capacity. Process‐based forest growth models offer a complementary approach by quantifying the environmental stresses trees experience at the tree line, allowing transition zones to be defined and ultimately mapped. In this study, we investigate the role remote sensing and physiological, ecosystem‐based modeling can play in the delineation of the alpine tree line. To do so, we utilize airborne LiDAR data to map tree height and stand density across a series of altitudinal gradients from below to above the tree line within the Swiss National Park (SNP), Switzerland. We then utilize a simple process‐based model to assess the importance of seasonal variations on four climatically related variables that impose non‐linear constraints on photosynthesis. Our results indicate that all methods predict the tree line to within a 50 m altitudinal zone and indicate that aspect is not a driver of significant variations in tree line position in the region. Tree cover, rather than tree height is the main discriminator of the tree line at higher elevations. Temperatures in fall and spring are responsible for the major differences along altitudinal zones, however, changes in evaporative demand also control plant growth at lower altitudes. Our results indicate that the two methods provide complementary information on tree line location and, when combined, provide additional insights into potentially endangered forest/grassland transition zones.  相似文献   
92.
Like many species, the Mormon Metalmark butterfly (Apodemia mormo) has been given conservation ranking in Canada based on limited data. This species is widespread across western North America, but has only two populations in Canada: an “endangered” population in the Similkameen valley of British Columbia, and a “threatened” population in Grasslands National Park (GNP) in Saskatchewan. Here we present genetic data from 1498 base pairs of the cytochrome oxidase I gene sequence and six novel microsatellite loci in order to assess (1) whether the two populations are related, (2) the degree to which they are genetically diverse and demographically stable, and (3) what their relationships are to the nearest unranked populations of A. mormo across the Canada-United States border. Our principal conclusion is that the two populations are not closely related genetically. We also found that the British Columbia population is genetically depauperate and, with the exception of the nearest neighboring populations across the border, not recently genetically connected to other populations in the Pacific Northwest. In comparison, the Saskatchewan population is genetically diverse, and gene flow occurs with several other eastern populations. Population structure was not detected within either the British Columbia or the Saskatchewan populations. This research supports the prior conservation rankings of both populations and provides new insight that will help to inform future management decisions for the Canadian populations of this charismatic butterfly.  相似文献   
93.
Event traces are helpful in understanding the performance behavior of parallel applications since they allow the in-depth analysis of communication and synchronization patterns. However, the absence of synchronized clocks on most cluster systems may render the analysis ineffective because inaccurate relative event timings may misrepresent the logical event order and lead to errors when quantifying the impact of certain behaviors or confuse the users of time-line visualization tools by showing messages flowing backward in time. In our earlier work, we have developed a scalable algorithm called the controlled logical clock that eliminates inconsistent inter-process timings postmortem in traces of pure MPI applications, potentially running on large processor configurations. In this paper, we first demonstrate that our algorithm also proves beneficial in computational grids, where a single application is executed using the combined computational power of several geographically dispersed clusters. Second, we present an extended version of the algorithm that—in addition to message-passing event semantics—also preserves and restores shared-memory event semantics, enabling the correction of traces from hybrid applications.  相似文献   
94.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
95.
Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes.In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south–north productivity gradient.We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m × 0.25 m). All traits varied significantly along the S–N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S–N gradient.Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass).Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.  相似文献   
96.
97.
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.  相似文献   
98.
Although plant cell walls may be degraded by microbial free enzymes, many bacteria degrade cellulose via enzyme complexes called cellulosomes. The study of the structures and mechanisms of these large macromolecular complexes is an active and ongoing research topic, with the goal of developing methods to improve lignocellulosic biomass conversion using cellulosomes. The aim of the present work was to evaluate and characterize the holocellulolytic activities produced by two new isolates (ISO1 and ISO2) of the spore-forming thermophilic anaerobic bacterium Clostridium thermocellum, during growth on crystalline cellulose and sugarcane bagasse, in comparison with activities obtained from the C. thermocellum strain CthJW. The pH and temperature values for optimal growth of the isolates were pH 7 and 60 °C, respectively. The isolates produced cellulolytic, xylanolytic, and pectinolytic activities when cultured on crystalline cellulose or sugarcane bagasse, which have never been used previously as the sole carbon source for these bacteria. The profiles of secreted proteins for these isolates, ISO1 and ISO2, were quite different from those obtained for the standard strain CthJW and from each other, as shown by 2D gel electrophoresis maps, and these profiles also depend on the carbon source used. Different protein isoforms were also detected in the maps for all growth conditions and bacterial strains. MALDI-TOF mass spectrometry was used to identify the differentially expressed proteins for ISO1 and ISO2 under growth in the presence of cellulose as carbon source. Twenty-five differentially expressed spots were identified and grouped into 8 functional categories: metabolism (20 %), motor function (20 %), protein synthesis (12 %), oxidative stress (16 %), secretory pathway (12 %), cellulose hydrolysis (4 %), protein folding (4 %), and defense (12 %). Spots 200 and 197, identified as a glycosyl hydrolase family member 9 and as a chaperone GroEL, respectively, were detected for all isolates and are potentially related to cellulosome architecture.  相似文献   
99.
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This “panel-specific” feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.  相似文献   
100.
The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号