首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3837篇
  免费   323篇
  国内免费   5篇
  4165篇
  2023年   27篇
  2022年   51篇
  2021年   113篇
  2020年   58篇
  2019年   84篇
  2018年   102篇
  2017年   78篇
  2016年   117篇
  2015年   206篇
  2014年   239篇
  2013年   245篇
  2012年   319篇
  2011年   276篇
  2010年   161篇
  2009年   170篇
  2008年   195篇
  2007年   170篇
  2006年   149篇
  2005年   137篇
  2004年   138篇
  2003年   129篇
  2002年   127篇
  2001年   58篇
  2000年   42篇
  1999年   48篇
  1998年   29篇
  1997年   22篇
  1996年   26篇
  1995年   26篇
  1994年   16篇
  1993年   24篇
  1992年   21篇
  1991年   25篇
  1990年   23篇
  1989年   17篇
  1988年   32篇
  1987年   18篇
  1986年   13篇
  1985年   11篇
  1984年   11篇
  1983年   18篇
  1982年   17篇
  1981年   18篇
  1980年   15篇
  1979年   21篇
  1978年   22篇
  1976年   16篇
  1975年   10篇
  1974年   13篇
  1973年   20篇
排序方式: 共有4165条查询结果,搜索用时 22 毫秒
71.
Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.  相似文献   
72.
Choices are influenced by gaze allocation during deliberation, so that fixating an alternative longer leads to increased probability of choosing it. Gaze-dependent evidence accumulation provides a parsimonious account of choices, response times and gaze-behaviour in many simple decision scenarios. Here, we test whether this framework can also predict more complex context-dependent patterns of choice in a three-alternative risky choice task, where choices and eye movements were subject to attraction and compromise effects. Choices were best described by a gaze-dependent evidence accumulation model, where subjective values of alternatives are discounted while not fixated. Finally, we performed a systematic search over a large model space, allowing us to evaluate the relative contribution of different forms of gaze-dependence and additional mechanisms previously not considered by gaze-dependent accumulation models. Gaze-dependence remained the most important mechanism, but participants with strong attraction effects employed an additional similarity-dependent inhibition mechanism found in other models of multi-alternative multi-attribute choice.  相似文献   
73.
Ferroptosis is a recently defined form of regulated cell death, which is biochemically and morphologically distinct from traditional forms of programmed cell death such as apoptosis or necrosis. It is driven by iron, reactive oxygen species, and phospholipids that are oxidatively damaged, ultimately resulting in mitochondrial damage and breakdown of membrane integrity. Numerous cellular signaling pathways and molecules are involved in the regulation of ferroptosis, including enzymes that control the cellular redox status. Alterations in the ferroptosis-regulating network can contribute to the development of various diseases, including cancer. Evidence suggests that ferroptosis is commonly suppressed in cancer cells, allowing them to survive and progress. However, cancer cells which are resistant to common chemotherapeutic drugs seem to be highly susceptible to ferroptosis inducers, highlighting the great potential of pharmacologic modulation of ferroptosis for cancer treatment. Non-coding RNAs (ncRNAs) are considered master regulators of various cellular processes, particularly in cancer where they have been implicated in all hallmarks of cancer. Recent work also demonstrated their involvement in the molecular control of ferroptosis. Hence, ncRNA-based therapeutics represent an exciting alternative to modulate ferroptosis for cancer therapy. This review summarizes the ncRNAs implicated in the regulation of ferroptosis in cancer and highlights their underlying molecular mechanisms in the light of potential therapeutic applications.Subject terms: Tumour biomarkers, Oncogenes  相似文献   
74.
Healthy blood plasma is required for several therapeutic procedures. To maximize successful therapeutic outcomes it is critical to control the quality of blood plasma. Clearly initiatives to improve the safety of blood transfusions will have a high economical and social impact. A detailed knowledge of the composition of healthy blood plasma is essential to facilitate such improvements. Apart from free proteins, lipids and metabolites, blood plasma also contains cell-derived microvesicles, including exosomes and microparticles from several different cellular origins. In this study, we have purified microvesicles smaller than 220nm from plasma of healthy donors and performed proteomic, ultra-structural, biochemical and functional analyses. We have detected 161 microvesicle-associated proteins, including many associated with the complement and coagulation signal-transduction cascades. Several proteases and protease inhibitors associated with acute phase responses were present, indicating that these microvesicles may be involved in these processes. There was a remarkably high variability in the protein content of plasma from different donors. In addition, we report that this variability could be relevant for their interaction with cellular systems. This work provides valuable information on plasma microvesicles and a foundation to understand microvesicle biology and clinical implications.  相似文献   
75.
Retinal ischemia and reperfusion injuries (R‐IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti‐apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK‐1/2 dependent regulation of heat‐shock proteins. Inhalation of Argon (75 Vol%) was performed after R‐IRI on the rats′ left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat‐shock proteins ?70, ?90 and heme‐oxygenase‐1, mitogen‐activated protein kinases (p38, JNK, ERK‐1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova . Argon significantly reduced the R‐IRI‐affected heat‐shock protein expression (p < 0.05). While Argon significantly induced ERK‐1/2 expression (p < 0.001), inhibition of ERK‐1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme‐oxygenase‐1 (p < 0.05). R‐IRI‐induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK‐1/2 activation in Müller cells. We conclude, that Argon treatment protects R‐IRI‐induced apoptotic loss of RGC via an ERK‐1/2 dependent regulation of heme‐oxygenase‐1.

  相似文献   

76.
The fluorescamine test for the rapid detection of trace amounts of uncoupled products from solid phase peptide synthesis is reported. This novel procedure can detect much smaller amounts of incomplete coupling with greater simplicity than has previously been possible. Since the test is carried out under mild conditions certain side reactions are circumvented. The fluorophor-resins are easily viewed under long wave ultraviolet light, are stable at room temperature, and may be used for quantitative evaluation.  相似文献   
77.
Daily therapeutic injections of cortisone to rats will cause weight loss and impaired wound healing. Weight loss is attributed to the catabolic effect of steroid, whereas impaired healing is associated with reductions in fibroplasia and connective tissue deposition. As the major structural protein component of connective tissue is collagen, its absence is responsible for the retarded gain in wound breaking strength. Cortisone also blocks wound closure by inhibiting wound contraction. An anabolic agent such as growth hormone may antagonize the effect of cortisone on the wound healing process. Endogenous GH can be released from the pituitary by exogenous injections of growth hormone-releasing factor (GRF). Two synthetic GRF peptides, a natural 44-amino acid peptide of the human GRF sequence, GRF-44, and an N-terminally substituted analog 29 residues, GRF-29A, were studied. Each was given twice daily with a single daily injection of cortisone for a 7-day period. Concurrent administration of GRF-44 or GRF-29A and cortisone to rats had no effect on restored body weight loss or inhibited wound contraction. While GRF-44 restored collagen deposition and caused restored wound breaking strength, GRF-29A was ineffective in restoring either. GRF-44, a synthetic peptide that stimulates pituitary release of growth hormone, antagonized some of the inhibiting effect of steroid on wound repair by promoting fibroplasia and collagen deposition.  相似文献   
78.
The skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1) contains approximately 50 thiols per subunit. These thiols have been grouped according to their reactivity/responsiveness toward NO, O(2), and glutathione, but the molecular mechanism enabling redox active molecules to modulate channel activity is poorly understood. In the case of NO, very low concentrations (submicromolar) activate RyR1 by S-nitrosylation of a single cysteine residue (Cys-3635), which resides within a calmodulin binding domain. S-Nitrosylation of Cys-3635 only takes place at physiological tissue O(2) tension (pO(2); i.e. approximately 10 mm Hg) but not at pO(2) approximately 150 mm Hg. Two explanations have been offered for the loss of RyR1 responsiveness to NO at ambient pO(2), i.e. Cys-3635 is oxidized by O(2) versus O(2) subserves an allosteric function (Eu, J. P., Sun, J. H., Xu, L., Stamler, J. S., and Meissner, G. (2000) Cell 102, 499-509). Here we report that the NO donors NOC-12 and S-nitrosoglutathione both activate RyR1 by release of NO but do so independently of pO(2). Moreover, NOC-12 activates the channel by S-nitrosylation of Cys-3635 and thereby reverses channel inhibition by calmodulin. In contrast, S-nitrosoglutathione activates RyR1 by oxidation and S-nitrosylation of thiols other than Cys-3635 (and calmodulin is not involved). Our results suggest that the effect of pO(2) on RyR1 S-nitrosylation is exerted through an allosteric mechanism.  相似文献   
79.
Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C1 to C8), substituted alkanes, branched-chain alkanes, carbon monoxide, ethers, and cyclic and aromatic compounds. The optimum pH and temperature for the epoxidation of propylene by soluble methane monooxygenase were found to be 7.0 and 40°C, respectively. Among various compounds tested, only NADH2 or NADPH2 could act as an electron donor. Formate and NAD+ (in the presence of formate dehydrogenase contained in the soluble fraction) or 2-butanol in the presence of NAD+ and secondary alcohol dehydrogenase generated the NADH2 required for the methane monooxygenase. Epoxidation of propylene catalyzed by methane monooxygenase was not inhibited by a range of potential inhibitors, including metal-chelating compounds and potassium cyanide. Sulfhydryl agents and acriflavin inhibited monooxygenase activity. Soluble methane monooxygenase was resolved into three components by ion-exchange chromatography. All three compounds are required for the epoxidation and hydroxylation reactions.  相似文献   
80.
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed “membrane nanotubes” (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号