首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5076篇
  免费   408篇
  2023年   40篇
  2022年   81篇
  2021年   150篇
  2020年   109篇
  2019年   131篇
  2018年   129篇
  2017年   114篇
  2016年   183篇
  2015年   271篇
  2014年   295篇
  2013年   321篇
  2012年   337篇
  2011年   365篇
  2010年   241篇
  2009年   190篇
  2008年   255篇
  2007年   260篇
  2006年   250篇
  2005年   204篇
  2004年   215篇
  2003年   194篇
  2002年   180篇
  2001年   80篇
  2000年   66篇
  1999年   61篇
  1998年   58篇
  1997年   44篇
  1996年   49篇
  1995年   26篇
  1994年   33篇
  1993年   34篇
  1992年   47篇
  1991年   32篇
  1990年   36篇
  1989年   36篇
  1988年   28篇
  1987年   23篇
  1986年   34篇
  1985年   32篇
  1984年   26篇
  1983年   24篇
  1982年   26篇
  1981年   14篇
  1980年   8篇
  1979年   26篇
  1978年   23篇
  1977年   13篇
  1976年   12篇
  1974年   7篇
  1972年   11篇
排序方式: 共有5484条查询结果,搜索用时 78 毫秒
991.
Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10%) by trypsin shaving, in 47 (15%) by elution at high pH, and 27 (63%) by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc) allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5), a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM), a D-alanyl-D-alanine carboxypeptidase (DdcP) and the peptidyl-prolyl cis-trans isomerase (PpiC). Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins reduced significantly the colony counts of E. faecium E155 in mice, indicating the effectiveness of these surface-related proteins as promising vaccine candidates to target different enterococcal pathogens.  相似文献   
992.

Background

Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton''s jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton''s jelly (hWMSCs) can accelerate tissue repair in vivo.

Methods

Mesenchymal stem cells were isolated from human Wharton''s jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO).

Results

hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures.

Conclusion

These results demonstrate that mesenchymal stem cells isolated from Wharton''s jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.  相似文献   
993.

Background

Fat redistribution, increased inflammation and insulin resistance are prevalent in non-diabetic subjects treated with maintenance dialysis. The aim of this study was to test whether pioglitazone, a powerful insulin sensitizer, alters body fat distribution and adipokine secretion in these subjects and whether it is associated with improved insulin sensitivity.

Trial Design

This was a double blind cross-over study with 16 weeks of pioglitazone 45 mg vs placebo involving 12 subjects.

Methods

At the end of each phase, body composition (anthropometric measurements, dual energy X-ray absorptometry (DEXA), abdominal CT), hepatic and muscle insulin sensitivity (2-step hyperinsulinemic euglycemic clamp with 2H2-glucose) were measured and fasting blood adipokines and cardiometabolic risk markers were monitored.

Results

Four months treatment with pioglitazone had no effect on total body weight or total fat but decreased the visceral/sub-cutaneous adipose tissue ratio by 16% and decreased the leptin/adiponectin (L/A) ratio from 3.63×10−3 to 0.76×10−3. This was associated with a 20% increase in hepatic insulin sensitivity without changes in muscle insulin sensitivity, a 12% increase in HDL cholesterol and a 50% decrease in CRP.

Conclusions/Limitations

Pioglitazone significantly changes the visceral-subcutaneous fat distribution and plasma L/A ratio in non diabetic subjects on maintenance dialysis. This was associated with improved hepatic insulin sensitivity and a reduction of cardio-metabolic risk markers. Whether these effects may improve the outcome of non diabetic end-stage renal disease subjects on maintenance dialysis still needs further evaluation.

Trial Registration

ClinicalTrial.gov NCT01253928  相似文献   
994.
A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division.  相似文献   
995.
Flightin is a thick filament protein that in Drosophila melanogaster is uniquely expressed in the asynchronous, indirect flight muscles (IFM). Flightin is required for the structure and function of the IFM and is indispensable for flight in Drosophila. Given the importance of flight acquisition in the evolutionary history of insects, here we study the phylogeny and distribution of flightin. Flightin was identified in 69 species of hexapods in classes Collembola (springtails), Protura, Diplura, and insect orders Thysanura (silverfish), Dictyoptera (roaches), Orthoptera (grasshoppers), Pthiraptera (lice), Hemiptera (true bugs), Coleoptera (beetles), Neuroptera (green lacewing), Hymenoptera (bees, ants, and wasps), Lepidoptera (moths), and Diptera (flies and mosquitoes). Flightin was also found in 14 species of crustaceans in orders Anostraca (water flea), Cladocera (brine shrimp), Isopoda (pill bugs), Amphipoda (scuds, sideswimmers), and Decapoda (lobsters, crabs, and shrimps). Flightin was not identified in representatives of chelicerates, myriapods, or any species outside Pancrustacea (Tetraconata, sensu Dohle). Alignment of amino acid sequences revealed a conserved region of 52 amino acids, referred herein as WYR, that is bound by strictly conserved tryptophan (W) and arginine (R) and an intervening sequence with a high content of tyrosines (Y). This motif has no homologs in GenBank or PROSITE and is unique to flightin and paraflightin, a putative flightin paralog identified in decapods. A third motif of unclear affinities to pancrustacean WYR was observed in chelicerates. Phylogenetic analysis of amino acid sequences of the conserved motif suggests that paraflightin originated before the divergence of amphipods, isopods, and decapods. We conclude that flightin originated de novo in the ancestor of Pancrustacea > 500 MYA, well before the divergence of insects (~400 MYA) and the origin of flight (~325 MYA), and that its IFM-specific function in Drosophila is a more recent adaptation. Furthermore, we propose that WYR represents a novel myosin coiled-coil binding motif.  相似文献   
996.

Background

The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD) cases associated with the consumption of açaí juice.

Methodology/Principal Findings

The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães) that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI). This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I) targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections.

Conclusion/Significance

These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as “Distantiae transmission”.  相似文献   
997.

Background

Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive.

Methodology/Principal findings

Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF.

Conclusions/Significance

Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions.  相似文献   
998.

Background

Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual''s history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues.

Methodology/Principal Findings

We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology.

Conclusions/Significance

These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages.  相似文献   
999.
The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.  相似文献   
1000.

Motivation

Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose.

Results

Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles.

Availability and Implementation

MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号