首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5076篇
  免费   408篇
  2023年   40篇
  2022年   81篇
  2021年   150篇
  2020年   109篇
  2019年   131篇
  2018年   129篇
  2017年   114篇
  2016年   183篇
  2015年   271篇
  2014年   295篇
  2013年   321篇
  2012年   337篇
  2011年   365篇
  2010年   241篇
  2009年   190篇
  2008年   255篇
  2007年   260篇
  2006年   250篇
  2005年   204篇
  2004年   215篇
  2003年   194篇
  2002年   180篇
  2001年   80篇
  2000年   66篇
  1999年   61篇
  1998年   58篇
  1997年   44篇
  1996年   49篇
  1995年   26篇
  1994年   33篇
  1993年   34篇
  1992年   47篇
  1991年   32篇
  1990年   36篇
  1989年   36篇
  1988年   28篇
  1987年   23篇
  1986年   34篇
  1985年   32篇
  1984年   26篇
  1983年   24篇
  1982年   26篇
  1981年   14篇
  1980年   8篇
  1979年   26篇
  1978年   23篇
  1977年   13篇
  1976年   12篇
  1974年   7篇
  1972年   11篇
排序方式: 共有5484条查询结果,搜索用时 625 毫秒
881.
The aim of this study was to clarify the importance of the soluble fraction on cell wall decomposition. Wheat plant was chosen as a model and was harvested at three stages of maturity: anthesis (A stage), 20 days after anthesis (B stage) and physiological maturity (PM stage). Wheat third internode (numbered down from the ear) were selected for this study. Internode age influenced the cumulative CO(2) kinetics with internodes from wheat stem harvested at anthesis mineralizing 62.1%+/-2.2 of added residue C whereas those harvested at the B and PM stages mineralized 58.8%+/-1.4 and 51.6%+/-1.7, respectively of the added C. Chemical analyses revealed that maturation of the selected internodes mainly altered residue quality by modifying the proportion of soluble to cell wall fractions rather than the quality of these fractions. The hexose to pentose ratios were good biomarkers of microbial sugars for both soluble and cell wall fractions, as were the uronic acids, which are not commonly determined in soil decomposition studies. This study clearly demonstrated that the contents of the internode soluble fraction did not affect the extent of cell wall C mineralization. Therefore, the soluble content of crop residues would not regulate the soil microbial populations able to mineralize cell wall C. However, this needs to be validated on a broader range of residue types with different nature of cell wall C or soluble compounds.  相似文献   
882.
Series of 2-exo-aryl-1,4-epoxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepines 3ak and cis-2-aryl-4-hydroxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepines 4aj were synthesized and evaluated against free and intracellular live forms of Trypanosoma cruzi and Leishmania chagasi parasites using in vitro assays. Cell toxicity was also analyzed on Vero and THP-1 mammalian cell lines. The compounds 3c, 3f, and 4d were the most active against both live forms of T. cruzi parasites with low mammalian cell toxicity. Some compounds were active on free live forms of L. chagasi parasites but none was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   
883.
The monoalkyltriazene moiety lends itself well to the design of combi-molecules. However, due to its instability under physiological conditions, efforts were directed towards stabilizing it by grafting a hydrolysable carbamate onto the 3-position. The synthesis and biological activities of these novel N-carbamyl triazenes are described.  相似文献   
884.
The aim of this study was to test the accuracy of genotype diagnosis after pre-amplification of DNA extracted from biopsies obtained by microblade cutting of ovine embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer to recipients. Sex and PrP genotypes were determined. Sex diagnosis was done by PCR amplification of ZFX/ZFY and SRY sequences after PEP-PCR while PrP genotype determination was performed after specific pre-amplification of specific target including codons 136, 154 and 171. Embryos were collected at Day 7 after oestrus. Blastocysts and expanded blastocysts were biopsied immediately after collection whereas compacted morulae were biopsied after 24 hr of in vitro culture. Eighty-nine biopsied embryos were frozen by vitrification. Fresh and vitrified whole embryos were kept as control. DNA of biopsies was extracted and pre-amplified. Sex diagnosis was efficient for 96.6% of biopsies and PrP genotyping was determined in 95.8% of codons. After embryo transfer, no significant difference was observed in lambing rate between biopsied, vitrified control and fresh embryos (54.5%, 60% and 66.6%, respectively). Embryo survival rate was not different between biopsied and whole vitrified embryos (P = 0.38). At birth, 96.7% of diagnosed sex and 95.4% of predetermined codons were correct. Lamb PrP profiles were in agreement with parental genotype. PEP-PCR coupled with sex diagnosis and nested PCR coupled with PrP genotype predetermination are very accurate techniques to genotype ovine embryo before transfer. These original results allow planning of selection of resistant genotype to scrapie and sex of offspring before transfer of cryopreserved embryo.  相似文献   
885.
886.
In recent years, the use of fluorescent glucose analogs has allowed the study of rapid transport modulation in heterogeneous cell cultures and complex tissues. However, the kinetic behavior of these tracers is not conventional. For instance, the fluorescent glucose analog 6-NBDG permeates the cell 50–100 times slower than glucose but the uptake of 6-NBDG is almost insensitive to glucose, an observation that casts doubts as to the specificity of the uptake pathway. To investigate this apparent anomaly in cultured astrocytes, which are rich in the glucose transporter GLUT1, we first estimated the kinetic parameters of 6-NBDG uptake, which were then incorporated into the kinetic model of GLUT1. The main outcome of the analysis was that 6-NBDG binds to GLUT1 with 300 times higher affinity than glucose, which explains why its uptake is not efficiently displaced by glucose. The high binding affinity of 6-NBDG also explains why cytochalasin B is less effective at inhibiting 6-NBDG uptake than at inhibiting glucose uptake. We conclude that 6-NBDG, used at low concentrations, permeates into astrocytes chiefly through GLUT1, and advise that the exofacial GLUT1 inhibitor 4,6-ethylidine- d -glucose be used, instead of glucose, as the tool of choice to confirm the specificity of 6-NBDG uptake.  相似文献   
887.
Leeches exhibit a marked scope of diversity, including different kinds of symbiosis. The aim of the present study was to demonstrate through biochemical and histological analysis that a species of piscicolid leech, Myzobdella platensis, is a true parasite of blue crabs, feeding on their hemolymph and using them as a site for cocoon deposition. In a total of 48 blue crabs collected on October 2007 at 3 sites of the S?o Vicente Estuary, 12 specimens were infested with leeches. Callinectes bocourti (n = 7) was the most infested species with leeches and cocoons; it was chosen for biochemical and histological assays. The immunoblotting assays showed a positive reaction of the proteins in the intestinal samples of leeches collected from crabs using antihemocyanin polyclonal antibody of Ampullaria canaliculata. In addition, leech intestinal samples were recognized by antihemolymph polyclonal antibody of nonparasitized blue crabs. Histological sections of leech gut showed hemocytes and a granular matrix similar to those found in crab blood vessels. Collectively, this evidence strongly suggests a parasitic interaction between the leech M. platensis and the blue crab C. bocourti, in which the former utilizes the latter as a site for cocoon deposition and possibly for dispersal similar to that proposed for Myzobdella lugubris in Callinectes sapidus in North America.  相似文献   
888.
Of the known essential division proteins in Escherichia coli, FtsN is the last to join the septal ring organelle. FtsN is a bitopic membrane protein with a small cytoplasmic portion and a large periplasmic one. The latter is thought to form an α-helical juxtamembrane region, an unstructured linker, and a C-terminal, globular, murein-binding SPOR domain. We found that the essential function of FtsN is accomplished by a surprisingly small essential domain (EFtsN) of at most 35 residues that is centered about helix H2 in the periplasm. EFtsN contributed little, if any, to the accumulation of FtsN at constriction sites. However, the isolated SPOR domain (SFtsN) localized sharply to these sites, while SPOR-less FtsN derivatives localized poorly. Interestingly, localization of SFtsN depended on the ability of cells to constrict and, thus, on the activity of EFtsN. This and other results suggest that, compatible with a triggering function, FtsN joins the division apparatus in a self-enhancing fashion at the time of constriction initiation and that its SPOR domain specifically recognizes some form of septal murein that is only transiently available during the constriction process. SPOR domains are widely distributed in bacteria. The isolated SPOR domains of three additional E. coli proteins of unknown function, DamX, DedD, and RlpA, as well as that of Bacillus subtilis CwlC, also accumulated sharply at constriction sites in E. coli, suggesting that septal targeting is a common property of SPORs. Further analyses showed that DamX and, especially, DedD are genuine division proteins that contribute significantly to the cell constriction process.Bacterial cytokinesis is mediated by a ring-shaped apparatus. Assembly of this septal ring (SR; also called the divisome or septasome) begins at the future site of fission, well before cell constriction initiates, and it remains associated with the leading edge of the invaginating cell envelope until fission is completed. The mature ring in Escherichia coli is made up of at least 10 essential division proteins (FtsA, -B, -I, -K, -L, -N, -Q, -W, and -Z and ZipA), which are each needed to prevent a lethal filamentation phenotype. The first known step in assembly of the division apparatus is polymerization of FtsZ just underneath the cytoplasmic membrane. These polymers are joined by FtsA and ZipA via direct interactions with FtsZ, resulting in an intermediate ring structure (the Z ring), onto which the remaining components assemble in a specific order to form a constriction-competent complex.In addition to the essential SR proteins, a growing number of nonessential proteins that associate with the organelle are being identified. Some of the latter are likely to serve redundant functions, while some may be required only under particular conditions (for reviews on the topic, see references 15, 19, and 25).FtsN belongs to the essential SR proteins and is thought to be the last of this class to join the organelle before the onset of cell constriction (1, 9, 11, 57, 59). It is a type II bitopic transmembrane species of 319 residues with a small cytoplasmic domain (residues 1 to 30), a single transmembrane domain (residues 31 to 54), and a large periplasmic domain (residues 55 to 319) (12) (Fig. (Fig.1).1). The periplasmic domain comprises three short regions with an α-helical character that are centered around residues 62 to 67 (H1), 80 to 93 (H2), and 117 to 123 (H3), an unstructured glutamine-rich linker (residues 124 to 242), and a C-terminal globular SPOR domain (residues 243 to 319) that has an affinity for peptidoglycan (55, 60) (Fig. (Fig.11).Open in a separate windowFIG. 1.E. coli ftsN locus, FtsN domains, and properties of genetic constructs. Shown are the EZTnKan-2 insertion site in ftsNslm117 strains and the deletion-replacement in ftsN<>aphftsN) strains. Numbers refer to the site of insertion (black triangle) or to the base pairs that were replaced with an aph cassette (doubleheaded arrow), counting from the start of ftsN. The domain structure of FtsN is illustrated below the ftsN gene. Indicated are the transmembrane domain (TM; light gray), helices H1, H2, and H3 (black) in the periplasmic juxtamembrane region, and the C-terminal SPOR domain (SFtsN; dark gray). The small periplasmic peptide that is sufficient for FtsN′s essential function in cell division (EFtsN [see text]) is indicated with the doubleheaded arrow below the domain structure diagram. Also shown are inserts present on plasmids that produce fusions of various portions of FtsN to GFP or TTGFP under the control of the Plac regulatory region. TTGFP-fusions contain the TorA signal peptide (hatched box) that is cleaved upon export to the periplasm via the twin arginine transport (Tat) system. Columns indicate the FtsN residues present in each fusion, whether the fusion could (+) or could not (−) compensate for the absence of native FtsN, and whether it accumulated at constriction sites sharply (+++) or poorly (−−+) or appeared evenly distibuted along the periphery of the cell (−−−).As with most SR proteins, it is unclear what the essential role of FtsN is. The ftsN gene was first identified as a multicopy suppressor of a Ts allele in essential division gene ftsA (11). Elevated levels of FtsN were subsequently found to also suppress some Ts alleles in ftsI, ftsK, and ftsQ (11, 18), and even to allow the propagation of cells with a complete lack of FtsK (22, 26) or of FtsEX (48). Depletion of FtsN allows assembly of all the other known essential components into nonconstricting SRs, but the number of ring structures per unit of cell length in FtsN filaments is two- to threefold lower than in wild-type (WT) cells (9). Bacterial two-hybrid studies suggest that FtsN interacts with several other SR proteins, including FtsA, FtsI (penicillin-binding protein 3 [PBP3]), FtsQ, FtsW, and MtgA (10, 16, 17, 38). Moreover, it was recently shown that the requirement for FtsN itself can be bypassed in cells producing certain mutant forms of FtsA, which are thought to stabilize the SR to a greater degree than native FtsA (5). These observations are all compatible with a general role of FtsN in stabilizing the ring structure. In addition, it was recently found that FtsN interacts directly with PBP1B, one of the major bifunctional murein synthases in E. coli, and that it can stimulate both its transglycosylase and transpeptidase activities in vitro (46). Thus, in addition to stabilizing the SR, FtsN may have a more specific role in modulating septal murein synthesis. Lastly, based on the fact that FtsN is the last known essential protein to join the SR, it is attractive to speculate the protein plays a role in triggering the constriction phase (10, 25). To what degree any of these proposed functions contribute to the essentiality of FtsN remains unclear.What does seem clear is that the essential activity of FtsN takes place in the periplasm and that residues 139 to 319 are dispensable for its essential function (12, 55). In addition, as residues 1 to 45 are also dispensable for targeting of FtsN to division sites, some portion of the periplasmic domain must also be sufficient to direct the protein to the division apparatus (1).In a genetic screen for synthetic lethality with min (slm) (6, 7), we isolated a mutant strain carrying a transposon insertion in codon 119 of ftsN. The viability of cells containing this severely truncated ftsNslm117 allele prompted us to better define the functional domains of FtsN, and we did so by studying the properties of fusions between various portions of FtsN to green fluorescent protein (GFP). To sublocalize a subset of these, we took advantage of the ability of the twin arginine transport system (Tat) to export functional and fluorescent GFP fusions into the periplasm, such that their periplasmic localization could be determined in live cells by fluorescence microscopy (6, 8, 50, 54).We show that the essential function of FtsN can be performed by a surprisingly small periplasmic peptide of at most 35 residues that is centered around helix H2 but that this essential domain (EFtsN) itself is unlikely to contribute much, if anything, to the accumulation of FtsN at constriction sites. On the other hand, the nonessential periplasmic SPOR domain (SFtsN) localized sharply to these sites by itself, while SPOR-less FtsN derivatives localized poorly, at best. Notably, septal localization of SFtsN depended on coproduction of EFtsN, in cis or in trans, unless cells were provided with the FtsAE124A protein (5) to allow constriction to ensue in the complete absence of EFtsN. Localization of SFtsN also depended on the activity of FtsI (PBP3) and the presence of at least one of the periplasmic murein amidases, AmiA, -B, or -C. The results suggest that FtsN joins the division apparatus in a self-enhancing fashion at the time of constriction initiation, which is compatible with a role of the protein in triggering the constriction phase of the division process. In addition, the results, taken together with earlier biochemical work (44, 46, 55), suggest that SFtsN is recruited to some form of septal murein that accumulates only transiently at sites of active constriction.In addition to FtsN, E. coli produces three proteins of unknown function that also bear a C-terminal SPOR domain (PF05036; Pfam 23) (20). Two of these, DamX and DedD, are inner membrane proteins with the same topology as FtsN, while the third, RlpA, is an outer membrane lipoprotein (43, 47, 53). We found that all three also accumulate at septal rings and that each of their SPOR domains act as autonomous septal targeting determinants. Moreover, phenotypes of the mutants indicate that both DamX and DedD contribute to the cell constriction process, leading to classification of these proteins as new nonessential division proteins.A SPOR domain is predicted to be present in at least 1,650 (putative) proteins from over 500 bacterial species (PF05036; Pfam 23) (20), raising the question as to how far SPOR properties have been conserved. We find that the SPOR domain of CwlC, a Bacillus subtilis murein amidase that is active during late stages of sporulation (39, 44), also accumulates sharply at division sites in E. coli.Our results predict that many other bacterial SPOR domain proteins specifically recognize the same or closely related target molecule(s) that accumulates transiently at sites of cell constriction. This is supported by a very recent study showing that SPOR domain proteins from Burkholderia thailandensis, Caulobacter crescentus, and Myxococcus xanthus accumulate at cell constriction sites as well (45).  相似文献   
889.
Orthodontic force compresses the periodontal ligament promoting the expression of pro-inflammatory mediators and matrix metalloproteinases responsible for tooth movement. The extent in time while periodontal cells are being treated and the increment in the amount of mechanical stress caused by the orthodontic force is thought to regulate the levels of metalloproteinases in the periodontal tissue. To study the possible regulation in the activity of metalloproteinases 2, 3, 7, 9, and 10 by simulated orthodontic force, human periodontal ligament fibroblast cultures were centrifuged (141×g) for 30, 60, 90, and 120 min, simulating the orthodontic force. Cell viability, protein quantification, and activity of metalloproteinases by zymography were evaluated at 24, 48, and 72 h after centrifugation in both cell lysates and growth medium. The activity of the 72-kDa matrix metalloproteinase 2 was decreased at 24 h regardless of the duration of centrifugation and at 48 h in cells centrifuged for 30 min only. Decrease in the amount of total protein in lysates was seen at 48 and 72 h with no change in cell viability. The data seem to indicate that the amount of mechanical stress regulates the levels of secreted matrix metalloproteinase 2. In addition, the centrifugation as a model for simulated orthodontic force may be used as a simple and reliable method to study the role played by matrix metalloproteinases in periodontal ligament when submitted to mechanical force as occurring during tooth movement.  相似文献   
890.
The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号