首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   26篇
  国内免费   4篇
  259篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   12篇
  2015年   12篇
  2014年   16篇
  2013年   6篇
  2012年   10篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   11篇
  1991年   4篇
  1990年   9篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1985年   9篇
  1984年   8篇
  1983年   13篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有259条查询结果,搜索用时 31 毫秒
41.
Molecular Biology Reports - Aberrant expressions of long non-coding RNAs promote cancer development including colorectal cancer. Expression profiling of cancer-related lncRNAs may introduce new...  相似文献   
42.
MOTIVATION: In two-color microarray experiments, well-known differences exist in the labeling and hybridization efficiency of Cy3 and Cy5 dyes. Previous reports have revealed that these differences can vary on a gene-by-gene basis, an effect termed gene-specific dye bias. If uncorrected, this bias can influence the determination of differentially expressed genes. RESULTS: We show that the magnitude of the bias scales multiplicatively with signal intensity and is dependent on which nucleotide has been conjugated to the fluorescent dye. A method is proposed to account for gene-specific dye bias within a maximum-likelihood error modeling framework. Using two different labeling schemes, we show that correcting for gene-specific dye bias results in the superior identification of differentially expressed genes within this framework. Improvement is also possible in related ANOVA approaches. AVAILABILITY: A software implementation of this procedure is freely available at http://cellcircuits.org/VERA  相似文献   
43.
Photosynthetic enhancement studies performed at 619 nm (excitation of Systems I and II) and at 446 nm (mainly excitation of System I) revealed an 18% photosynthetic enhancement simultaneously with a 31% reduction in glycolate excretion. This observation supports the hypothesis that some glycolate may be consumed in an oxidation process associated with System I when System II is poorly excited and the supply of electrons from the water splitting process of photosynthesis is low.  相似文献   
44.
One can determine the best dilution of a primary antibody for immunohistochemistry that uses horseradish peroxidase conjugated to a secondary antibody by testing increasing concentrations sequentially on the same tissue section. When the same tissue section is incubated repeatedly with increasing concentrations of primary antibodies to epithelial membrane antigen, smooth muscle α-actin, or vimentin using alkaline phosphatase conjugated to a secondary antibody as the reporter, the best staining was obtained with a less concentrated primary antibody than was optimal for a single staining test. The best concentration of primary antibody for single run staining using an alkaline phosphatase reporting system is usually four times the best concentration for staining with multiple runs. The optimal concentration can be determined by denaturing the residual alkaline phosphatase and extracting residual stain by incubating the section in 4:1 diglyme:phosphate buffered saline for 20 min at 80o C between tests of primary antibody concentrations. I tested the method for four chromogens from one supplier and one chromogen from a different supplier.  相似文献   
45.
46.
Journal of Molecular Histology - End-stage liver disease (ESLD) is a term used clinically in reference to a group of liver diseases with liver transplantation as the choice of treatment. Due to the...  相似文献   
47.
肿瘤组织经机械剪切和酶消化分离肿瘤浸润淋巴细胞(TIL)。TIL在含1000U/ml重组人白细胞介素-2(rhIL-2)的培养液中培养6d后,植入含1000U/ml rhIL-2的软琼脂半固体培养基中培养,7d后将形成的克隆转移到含rhIL-2的培养液中培养。~(51)Cr释放法测定结果表明,约30%的克隆对NK敏感的K562细胞和对NK不敏感的H7402肝癌细胞有细胞毒性,为具有杀瘤活性的TIL杀伤克隆(TIL-K)。60%以上TIL-K克隆在含IL-2的培养液中可持续地增殖2~3个月,其细胞数可扩增至10~8~10~9,并始终保持对肿瘤细胞的细胞毒性。TIL-K克隆的表型为CD3~ 、CD4~-、CD8~ 、CD16~-,有T细胞抗原受体β链基因的表达,说明其属T细胞系统。采用半固体-液体两步培养法可获取大量高纯度具有广谱杀瘤活性的TIL,本研究有助于TIL的深入研究和临床应用。  相似文献   
48.
Inhibition radioimmunoassays with blood group A-related oligosaccharides have been used to investigate the specificities of six monoclonal anti-A antibodies, three of which had been intentionally generated by immunization of mice with blood group A erythrocytes and A-active blood group substance, and three were incidentally produced following immunization of mice with human tonsil cell membranes or a human colon cancer cell line. By hemagglutination, these antibodies are highly specific for human blood group A erythrocytes. However, they differ from one another in their reaction patterns with mono- and difucosyl A antigen structures and the corresponding afucosyl sequences on Type 1 and Type 2 backbone structures. The six antibodies, together with four previously characterized anti-A monoclonal antibodies (originally raised against the receptor for epidermal growth factor) have been classified into five groups. The first two groups consist of antibodies with broad specificities for A-related structures. There are five antibodies in the first group (TL5, 29.1, A17/3D1, MH2/6D4, and MH1/5D1) reacting to varying degrees with the mono- and difucosyl A antigen structures on either type of backbone sequence. In the second group are two antibodies (A15/3D4 and A15/3D3) which are difficult to inhibit with the oligosaccharides tested, but they reacted best with monofucosyl A structure on either type of backbone. Each of the remaining three antibodies had a distinct and more restricted reaction pattern, with a specificity for the difucosyl A antigen on both types of backbone (antibody EGR/G49) or the Type 1-based mono- and difucosyl A antigen structures (antibody MAS 016c) or the Type 2-based monofucosyl A antigen structure (antibody 455). The reactions of four of the antibodies with N-acetylgalactosamine or with oligosaccharides containing the afucosyl sequence GalNAc alpha 1-3Gal suggest that they may react with certain glycoconjugates with alpha-N-acetylgalactosaminyl termini ("A-like" structures) that are unrelated to the products of the blood group A gene-specified alpha-N-acetylgalactosaminyl-transferase. Knowledge of the differing reactions of these monoclonal antibodies is important for interpreting their reactions with glycoproteins and glycolipids of diverse origins.  相似文献   
49.
Phosphoglucomutase (EC 2.7.5.1, PGM) was purified to homogeneity from maize (Zea mays L.) leaves. The enzyme had specific activity 11. 7 U/mg protein and molecular mass (determined by gel-chromatography) of 133 +/- 4 kD. The molecular mass of PGM subunits determined by SDS-electrophoresis was 66 +/- 3 kD. The enzyme had Km for glucose-1-phosphate and glucose-1,6-diphosphate of 20.0 +/- 0.9 and 16.0 +/- 0.8 &mgr;M, respectively. Concentrations of glucose-1-phosphate and glucose-1,6-diphosphate above 3 and 0.4 mM, respectively, cause substrate inhibition. The enzyme activity was maximal at pH 8.0 and temperature 35 degreesC. Magnesium ions activate the enzyme and manganese ions inhibit it. 3-Phosphoglycerate is an uncompetitive inhibitor of the enzyme (Ki = 1.22 +/- 0.05 mM). Fructose-6-phosphate, 6-phosphogluconate, and ADP activate PGM, whereas ATP, UTP, and AMP inhibit the enzyme. Citrate was also a potent inhibitor, inhibitory effects of isocitrate and cis-aconitate being less pronounced.  相似文献   
50.
Mutations in the receptor-binding site of the hemagglutinin of pandemic influenza A(H1N1) 2009 viruses have been detected sporadically. An Asp222Gly (D222G) substitution has been associated with severe or fatal disease. Here we show that 222G variants infected a higher proportion of ciliated cells in cultures of human airway epithelium than did viruses with 222D or 222E, which targeted mainly nonciliated cells. Carbohydrate microarray analyses showed that 222G variants bind a broader range of α2-3-linked sialyl receptor sequences of a type expressed on ciliated bronchial epithelial cells and on epithelia within the lung. These features of 222G mutants may contribute to exacerbation of disease.Although the majority of disease cases have been mild, the pandemic influenza A(H1N1) 2009 (H1N1pdm) virus has caused a substantial number of severe and fatal infections (2). Mutants with a D222G or D222E substitution (D225G or D225E in the H3 numbering system) in the receptor-binding site of the virus hemagglutinin (HA) have been detected sporadically (1), and the D222G substitution has been observed to correlate with cases of severe or fatal disease (1, 3, 9, 14). Cell surface receptors for influenza viruses are sialyl glycans (α2-3 Sia or α2-6 Sia) with terminal sialic acid linked α2-3 or α2-6, respectively, to a penultimate galactose. These differ in distribution in the tissues and cells of different species. The sialyl glycans are differentially recognized by the HAs of human and animal influenza viruses and are critical determinants of host range and tissue tropism (16). Using an experimental system of differentiated cultures of human tracheobronchial epithelial cells (HTBE) for studying influenza virus cell tropism, we and others have established that in the initial stages of infection, seasonal human influenza viruses which recognize α2-6 Sia receptors infect mainly nonciliated cells, whereas avian viruses which recognize α2-3 Sia receptors predominantly infect ciliated cells (8, 17, 22).Previous analyses of human and swine influenza H1N1 viruses (5, 15, 21) and preliminary studies of H1N1pdm viruses (24) have indicated that amino acid substitutions in the HA at position 222 may affect the specificity of receptor binding. This, in turn, would be predicted to determine the range of cell types in human respiratory tissues infected by the viruses (17, 20, 22, 23). We have therefore examined the influence of the D222G and D222E substitutions on the cell tropism of H1N1pdm viruses in HTBE cultures (Table (Table1).1). Five viruses were isolated from clinical material in MDCK cells and passaged solely in these cells. Two of these, A/Hamburg/5/2009 (Ham) (4) isolated from a case of mild infection and A/Moldova/G186/2009 (Mol) from a serious but nonfatal infection, had 222D. A/Dakar/37/2009 (Dak) isolated from a mild case of the disease had 222E. Two isolates from fatal cases, A/Lviv/N6/2009 (Lvi) and A/Norway/3206-3/2009 (Nor), had 222G. A sixth virus tested, A/Hamburg/5/2009-e (Ham-e), was derived from Ham by egg passage and plaque purification in MDCK cells and differed by a single substitution, D222G.

TABLE 1.

Differences in amino acid sequence of the HAs of the H1N1pdm viruses and cell tropism in HTBE cultures
VirusOutcomeSubstitution at HA position:a
Infected ciliated cellsb
137 (140)154 (157)155 (158)203 (206)222 (225)
A/Moldova/G186/2009 (Mol)NonfatalPKGTD4.7 (2.2)
A/Dakar/37/2009 (Dak)NonfatalE2.7 (1.8)
A/Hamburg/5/2009 (Ham)NonfatalS3.3 (2.1)
A/Hamburg/5/2009-e (Ham-e)SG25 (12)d
A/Norway/3206-3/2009 (Nor)FatalSEcG19 (6.7)d
A/Lviv/N6/2009 (Lvi)FatalEcG34 (15)d
Open in a separate windowaAmino acids differing from those of Moldova/G186/2009 are shown. H3 numbering is in parentheses.bThe percentage of infected ciliated cells relative to the total number of infected cells. Standard deviations are shown in parentheses.cSubstitution acquired during isolation and propagation in MDCK cells.dP < 0.0001 (unpaired two-sided t test versus A/Moldova/G186/2009).The preparation of differentiated HTBE cultures, viral infection of the cultures for cell tropism analysis, and double immunostaining for viral antigen and cilia of ciliated cells were done as described previously (17). Infected cells were counted in the epithelial segment that included 15 to 30 consecutive microscopic fields containing between 5 and 20% ciliated cells relative to the total number of superficial cells. Percentages of infected ciliated cells relative to the total number of infected cells were calculated for each segment. Ten segments per culture were analyzed, and the results were averaged.Two distinctive patterns of cell tropism were observed (Fig. (Fig.11 and Table Table1).1). The viruses with 222D (Mol and Ham) and 222E (Dak) showed a pattern of cell tropism typical of seasonal influenza A and B viruses (17, 22) infecting predominantly nonciliated cells known to be rich in α2-6 Sia sequences (17): less than 5% of infected cells were ciliated. In contrast, the three viruses with 222G, Lvi, Nor, and Ham-e, infected both ciliated and nonciliated cells, and 20% or more of the infected cells were ciliated and known to express α2-3 Sia sequences (11, 17). This change in cell tropism, with a 5- to 10-fold increase in the infection of ciliated cells, thus correlated with the presence of the D222G substitution in the HA, and other amino acid differences, in particular D222E, had little or no effect. Furthermore, there were no differences between the amino acid sequences of the neuraminidases (NA) of the 222D, 222G, and 222E viruses which might have an impact on cell tropism: the NA sequences of Mol, Nor, Lvi, and Dak were identical.Open in a separate windowFIG. 1.Difference in cell tropism between the clinical isolate Ham (left image) and its 222G variant Ham-e (right image) in HTBE cultures. The cultures were infected at a multiplicity of infection of approximately 1, fixed 8 h after infection, and double immunostained for virus antigen using rabbit antisera against A/California/4/2009(H1N1pdm) (red) and for cilia of ciliated cells using an anti-β tubulin monoclonal antibody (dark gray). Arrowheads point to infected ciliated cells. Bars, 10 μm.To investigate whether changes in receptor binding specificity could account for the distinct cell tropism of the 222G variants, we performed carbohydrate microarray analyses (Fig. (Fig.22 and Table Table2;2; see Fig. S1 and S2 and Table S1 in the supplemental material). The virus preparations were analyzed in the absence of or following inactivation by treatment with beta-propiolactone; the conditions used (4) had no perceptible effect on the receptor-binding profiles. Virus suspensions were concentrated by pelleting, adjusted to contain equivalent concentrations of viruses as assessed by HA titration with human red blood cells and gel electrophoresis with immunoblotting, and stored at 4°C in phosphate-buffered saline (pH 7.4) containing 0.05% sodium azide. The microarray analyses were performed as described previously (4) using the same array series of lipid-linked probes (see Table S1 in the supplemental material). Unless stated otherwise, the viruses were analyzed at an HA titer of 2,000.Open in a separate windowFIG. 2.Carbohydrate microarray analyses of H1N1pdm viruses. The microarray data are for the two 222D viruses (Mol and Ham), the 222E mutant virus (Dak), and the three 222G mutant viruses (Nor, Lvi, and Ham-e) analyzed at an HA titer of 2,000. The microarrays consisted of 80 sialylated and 6 neutral lipid-linked glycan probes arranged according to sialic acid linkage, glycan backbone chain length, and sequence (see Table S1 in the supplemental material). The numerical scores for the fluorescent binding signals are means (with error bars) for duplicate spots at 5 fmol/spot. The various types of terminal sialic acid linkage are indicated by the colored panels as defined at the bottom.

TABLE 2.

Virus binding of selected α2-3 Sia sequences in carbohydrate microarrays grouped according to backbone sequence and lipid moiety
Open in a separate window
Open in a separate windowa Probe number and position in microarrays.b Abbreviations for monosaccharides: Fuc, fucose; Gal, galactose; Glc, glucose; GlcNAc, N-acetylglucosamine; NeuAc, N-acetylneuraminic acid. Other abbreviations: Cer, natural glycolipids with various ceramide moieties; Cer36, synthetic glycolipids with ceramide having a total of 36 carbon atoms; DH, neoglycolipids prepared from reducing oligosaccharides by reductive amination with the amino lipid 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine.c —, Signal intensity of <500.For all of the viruses, the intensities of binding to α2-6 Sia sequences were greater overall than the intensities of binding to the α2-3 Sia sequences. There were, however, marked differences between the two 222D viruses, Mol and Ham, and the three 222G variants, Lvi, Nor, and Ham-e, in binding to the α2-3 Sia sequences (highlights are in Table Table2).2). With the 222D viruses, relatively low intensities of binding to α2-3 Sia sequences were detected and they bound mostly to α2-3 Sia sequences that were modified with fucose (Fuc) on the outer N-acetylglucosamine (GlcNAc), as in the blood group-related antigens sialyl Lewisa (SLea) and SLex (probes 28, 29, and 31) and/or with sulfate (SU) on GlcNAc (probes 27 and 35, Table Table2;2; see Fig. S2b in the supplemental material). This is in accord with our previous study of Ham (see Fig. S3 in the supplemental material for reference 4). In contrast, the 222G mutants not only bound more strongly to these α2-3 Sia sequences but bound to additional sequences, such as the VIM-2 antigen sequence (probe 39) with Fuc on internal GlcNAc and to sequences lacking Fuc or SU (probes 23 and 24, Table Table2;2; see Fig. S2a in the supplemental material). All of the pdm viruses investigated here showed greater binding to the 6SU-SLex sequence (probe 35) than to the analogue lacking SU (probe 31) and 6′SU SLex (probe 33, Table Table2).2). This is a property shared with highly pathogenic poultry viruses (6, 7). The pattern of binding to the α2-6 Sia sequences was largely unchanged (Fig. (Fig.2;2; see Fig. S2c in the supplemental material).As passage in MDCK cells tends to select “complementary” amino acid changes such as K154E or G155E in addition to the single D222G mutation present in the virus of the clinical specimen, two more viruses were investigated as controls for the effects of this substitution in Lvi, the double mutant (G155E D222G). These were A/Athens/16606/2009 (Ath) and A/Lisbon/120/2009 (Lis), which possess the G155E substitution in the absence of D222G. The binding profiles observed for Ath and Lis (see Fig. S3 in the supplemental material) indicated that the 155 substitution did not contribute to the increased α2-3 Sia binding of Lvi, which was therefore due exclusively to the D222G substitution.The D222E mutant Dak exhibited a carbohydrate-binding profile that was intermediate between those of the 222D and 222G viruses. Compared to the 222D viruses (Mol and Ham) that targeted preferentially nonciliated cells, Dak displayed slightly increased binding to some α2-3 Sia sequences. It was clearly distinguishable from the 222G variants by weaker or negligible binding to a number of other α2-3 Sia sequences, for example, probes 24 and 33 and the VIM-2 antigen sequence, probe 39 (Fig. (Fig.22 and Table Table2;2; see Fig. S1 and S2 in the supplemental material). These are properties that Dak shared with 222D viruses. The similarities in receptor binding and cell tropism of the 222E and 222D viruses are consistent with their circulation in the population, in contrast to the 222G variants that have emerged sporadically and do not appear to be transmitted readily to other individuals (18).There is thus a clear correlation between enhanced binding to α2-3 Sia sequences by the 222G variants and increased infection of ciliated epithelial cells. The increased capacity of 222G mutant viruses to infect ciliated epithelial cells prominent along the entire airway epithelium would be predicted to interfere with the important mucociliary clearance function of these cells and increase the severity of disease. Another human pathogen, Mycoplasma pneumoniae, which can also cause severe respiratory disease targets the microvilli of ciliated cells in the human bronchus (10) that express the VIM-2 antigen (12, 13). The enhanced capacity of the 222G variants to target α2-3 Sia receptors present in relatively larger amounts on ciliated epithelial cells of the tracheobronchial epithelium (11, 17) and on cells in bronchioles and alveoli (20) may also contribute to more severe pulmonary infection, as suggested by the more frequent identification of 222G variants in specimens from the lower respiratory tract (3), and may explain why they are infrequently transmitted. It is also pertinent to note that the D222G substitution was identified in the HAs from two of five victims of the 1918 pandemic (19). Glycan array analyses of recombinant HAs from one of the 1918 222G mutant viruses (A/New York/1/18) showed (21) a narrow profile of binding to certain α2-3 Sia sequences which had an additional negative charge such as SU or sialic acid. The pattern was more restricted than the repertoire of α2-3 Sia sequences bound by the 222G 2009 pdm viruses that we have investigated here. The New York variant showed little binding to α2-6 Sia sequences, in contrast to the strong and broad α2-6 Sia binding profiles of the 2009 pdm viruses observed here and in an earlier study (24). These differences between the 1918 and 2009 pdm viruses are most likely a reflection of differences in other residues in the receptor-binding pocket.Whether the selection of the D222G mutation is a cause or a consequence of more severe lower respiratory tract infection is still to be resolved. It is evident, however, that its emergence is likely to exacerbate the severity of disease. The altered receptor specificity and distinctive cell tropism of the D222G mutants of H1N1pdm are hallmarks of a more dangerous pathogen, emphasizing the importance of close monitoring of the evolution of these viruses.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号