首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10497篇
  免费   1180篇
  国内免费   1338篇
  13015篇
  2024年   35篇
  2023年   123篇
  2022年   274篇
  2021年   427篇
  2020年   363篇
  2019年   427篇
  2018年   406篇
  2017年   363篇
  2016年   428篇
  2015年   619篇
  2014年   759篇
  2013年   846篇
  2012年   993篇
  2011年   893篇
  2010年   662篇
  2009年   561篇
  2008年   669篇
  2007年   630篇
  2006年   505篇
  2005年   479篇
  2004年   444篇
  2003年   439篇
  2002年   453篇
  2001年   228篇
  2000年   187篇
  1999年   168篇
  1998年   117篇
  1997年   92篇
  1996年   74篇
  1995年   49篇
  1994年   60篇
  1993年   31篇
  1992年   26篇
  1991年   30篇
  1990年   28篇
  1989年   22篇
  1988年   15篇
  1987年   15篇
  1986年   20篇
  1985年   9篇
  1984年   10篇
  1983年   5篇
  1982年   10篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Cumulating evidences suggested an important role of sphingosine‐1‐phosphate (S1P) and its receptors in regulating endothelial barrier integrity. Our previous study revealed that the circulating S1P levels and renal expression of S1PRs correlated with disease activity and renal damage in patients with antineutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV). This study investigated the role of S1P and its receptors in myeloperoxidase (MPO)‐ANCA‐positive IgG‐mediated glomerular endothelial cell (GEnC) activation. The effect of S1P on morphological alteration of GEnCs in the presence of MPO‐ANCA‐positive IgG was observed. Permeability assay was performed to determine endothelial monolayer activation in quantity. Both membrane‐bound and soluble ICAM‐1 and VCAM‐1 levels were measured. Furthermore, antagonists and/or agonists of various S1PRs were employed to determine the role of different S1PRs. S1P enhanced MPO‐ANCA‐positive IgG‐induced disruption of tight junction and disorganization of cytoskeleton in GEnCs. S1P induced further increase in monolayer permeability of GEnC monolayers in the presence of MPO‐ANCA‐positive IgG. S1P enhanced MPO‐ANCA‐positive IgG‐induced membrane‐bound and soluble ICAM‐1/VCAM‐1 up‐regulation of GEnCs. Soluble ICAM‐1 levels in the supernatants of GEnCs stimulated by S1P and MPO‐ANCA‐positive IgG increased upon pre‐incubation of S1PR1 antagonist, while pre‐incubation of GEnCs with the S1PR1 agonist down‐regulated sICAM‐1 level. Blocking S1PR2‐4 reduced sICAM‐1 levels in the supernatants of GEnCs stimulated by S1P and MPO‐ANCA‐positive IgG. Pre‐incubation with S1PR5 agonist could increase sICAM‐1 level in the supernatants of GEnC stimulated by S1P and MPO‐ANCA‐positive IgG. S1P can enhance MPO‐ANCA‐positive IgG‐mediated GEnC activation through S1PR2‐5.  相似文献   
72.
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation.  相似文献   
73.
Caveolin‐1 (Cav1) is down‐regulated during MK4 (MDCK cells harbouring inducible Ha‐RasV12 gene) transformation by Ha‐RasV12. Cav1 overexpression abrogates the Ha‐RasV12‐driven transformation of MK4 cells; however, the targeted down‐regulation of Cav1 is not sufficient to mimic this transformation. Cav1‐silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction‐related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I‐CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha‐RasV12‐inducing MK4 cells increased exosome‐like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I‐CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I‐CM (MK4+I‐EXs). Wnt5a, a downstream product of Ha‐RasV12, was markedly secreted by MK4+I‐CM and MK4+I‐EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha‐RasV12‐ and MK4+I‐CM‐induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down‐regulation, either by Ha‐RasV12 or targeted shRNA, increased frizzled‐2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I‐EXs in MDCK cells. These data suggest that Cav1‐dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha‐RasV12‐Wnt5a‐Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha‐RasV12‐driven cell transformation.  相似文献   
74.
75.
76.
77.
Layered transition metal sulfides (LTMSs) have tremendous commercial potential in anode materials for sodium‐ion batteries (SIBs) in large‐scale energy storage application. However, it is a great challenge for most LTMS electrodes to have long cycling life and high‐rate capability due to their larger volume expansion and the formation of soluble polysulfide intermediates caused by the conversion reaction. Herein, layered CuS microspheres with tunable interlayer space and pore volumes are reported through a cost‐effective interaction method using a cationic surfactant of cetyltrimethyl ammonium bromide (CTAB). The CuS–CTAB microsphere as an anode for SIBs reveals a high reversible capacity of 684.6 mAh g?1 at 0.1 A g?1, and 312.5 mAh g?1 at 10 A g?1 after 1000 cycles with high capacity retention of 90.6%. The excellent electrochemical performance is attributed to the unique structure of this material, and a high pseudocapacitive contribution ensures its high‐rate performance. Moreover, in situ X‐ray diffraction is applied to investigate their sodium storage mechanism. It is found that the long chain CTAB in the CuS provides buffer space, traps polysulfides, and restrains the further growth of Cu particles during the conversion reaction process that ensure the long cycling stability and high reversibility of the electrode material.  相似文献   
78.
Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare and newly identified disease among patients requiring cardiac transplantation. TGCV is characterized by cardiomyocyte steatosis and triglyceride (TG)-deposit atherosclerosis, resulting from the abnormal intracellular metabolism of TG. TGCV is classified into primary and idiopathic types. Primary TGCV carries ultra-rare genetic mutations in the adipose triglyceride lipase (ATGL), a rate-liming enzyme that hydrolyzes intracellular TG in adipose and non-adipose tissues. Idiopathic TGCV, first identified among autopsied individuals with diabetes mellitus (DM) with severe heart diseases, shows no ATGL mutations and its causes and underlying mechanisms are still unknown. TGCV is difficult to diagnose in daily clinics, thereby demanding feasible diagnostic procedures. We aimed to develop an assay to measure ATGL activity using peripheral leucocytes. Human his6-ATGL was expressed in COS1 cells, purified to homogeneity, and used to raise a polyclonal antibody neutralizing TG-hydrolyzing activity of ATGL. We developed a selective immunoinactivation assay (SIIA) for the quantitation of ATGL activity in cell lysates of leucocytes by the antibody neutralizing ATGL activities. ATGL activity was measured in 13 idiopathic TGCV patients, with two patients with primary TGCV as the negative control. Healthy (non-DM) and DM controls without heart diseases were also subjected. The developed SIIA assay revealed significant reduction in ATGL activity in leucocytes from patients with idiopathic TGCV who did not carry ATGL mutations as compared with non-DM and DM controls. Thus, ATGL in leucocytes may be an important biomarker for the diagnosis of TGCV and our assay may provide insights into pathophysiology and elucidate the underlying mechanism of TGCV and related disorders.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号