全文获取类型
收费全文 | 78839篇 |
免费 | 6538篇 |
国内免费 | 4877篇 |
专业分类
90254篇 |
出版年
2024年 | 138篇 |
2023年 | 901篇 |
2022年 | 2075篇 |
2021年 | 3602篇 |
2020年 | 2326篇 |
2019年 | 2838篇 |
2018年 | 2868篇 |
2017年 | 2029篇 |
2016年 | 2872篇 |
2015年 | 4585篇 |
2014年 | 5294篇 |
2013年 | 5961篇 |
2012年 | 6897篇 |
2011年 | 6352篇 |
2010年 | 3817篇 |
2009年 | 3372篇 |
2008年 | 4112篇 |
2007年 | 3652篇 |
2006年 | 3172篇 |
2005年 | 2679篇 |
2004年 | 2276篇 |
2003年 | 1972篇 |
2002年 | 1730篇 |
2001年 | 1559篇 |
2000年 | 1565篇 |
1999年 | 1447篇 |
1998年 | 847篇 |
1997年 | 797篇 |
1996年 | 808篇 |
1995年 | 736篇 |
1994年 | 687篇 |
1993年 | 530篇 |
1992年 | 818篇 |
1991年 | 657篇 |
1990年 | 601篇 |
1989年 | 531篇 |
1988年 | 421篇 |
1987年 | 362篇 |
1986年 | 336篇 |
1985年 | 299篇 |
1984年 | 221篇 |
1983年 | 199篇 |
1982年 | 112篇 |
1981年 | 118篇 |
1980年 | 86篇 |
1979年 | 147篇 |
1978年 | 84篇 |
1977年 | 95篇 |
1975年 | 111篇 |
1974年 | 116篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Zhou Q Wang L Cai X Wang D Hua X Qu L Lin J Chen T 《Journal of plant physiology》2011,168(11):1249-1255
Casparian bands of endodermis and exodermis play crucial roles in blocking apoplastic movement of ions and water into the stele of roots through the cortex. These apoplastic barriers differ considerably in structure and function along the developing root. The present study assessed net Na+ fluxes in anatomically distinct root zones of rice seedlings and analyzed parts of individual roots showing different Na+ uptake. The results indicated that anatomically distinct root zones contributed differently to the overall uptake of Na+. The average Na+ uptake in root zones in which Casparian bands of the endo- and exo-dermis were interrupted by initiating lateral root primordia (root zone III) was significantly greater than that at the root apex, where Casparian bands were not yet formed (root zone I), or in the region where endo- and exo-dermis with Casparian bands were well developed (root zone II). The measurement of net Na+ fluxes using a non-invasive scanning ion-selective electrode technique (SIET) demonstrated that net Na+ flux varied significantly in different positions along developing rice roots, and a net Na+ influx was obvious at the base of young lateral root primordia. Since sodium fluxes changed significantly along developing roots of rice seedlings, we suggest that the significantly distinct net Na+ flux profile may be attributed to different apoplastic permeability due to lateral root primordia development for non-selective apoplastic bypass of ions along the apoplast. 相似文献
992.
The rhizomatous sedge Carex brevicuspis can produce clumping ramets from shortened rhizomes (phalanx) and spreading ramets from elongated rhizomes (guerrilla) to form a combined clonal growth form. In this paper, changes in clonal growth and biomass allocation pattern of C. brevicuspis in response to sedimentation were studied. Four sedimentation depths (0, 3, 6, and 9 cm) were applied to 48 ramets in a randomized block design. Plants were harvested after 20 weeks. With increasing sedimentation depth, the proportion of spreading ramets to total ramets increased from 19.6% in 0 cm to 92.9% in 9 cm sedimentation treatments, whereas that of clumping ramets decreased from 80.4% to 7.1%, indicating a change of clonal growth form from phalanx to guerrilla as a response to sedimentation. With increasing sedimentation depth, biomass allocation to shoots and roots did not change, but rhizome mass ratio increased from 2.7% in 0 cm to 7.2% in 9 cm sedimentation treatments, suggesting that production of long rhizomes changes biomass allocation pattern. The results show that plasticity of clonal growth forms, by which more spreading ramets are produced, is an effective strategy to avoid sedimentation stress under our experimental conditions. 相似文献
993.
Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) was selected as a model molecule of (β/α)(8) because the general structure consists of ~10% enzymes. The Xyn has five N-terminal DRs and one C-terminal DR, respectively, which were deleted to construct three mutants, XynΔN, XynΔC, and XynΔNC. Each mutant was ~2-, 3-, or 4-fold more thermostable and 7-, 4-, or 4-fold more active than the Xyn. The N-terminal deletion decreased the xylanase temperature optimum for activity (T(opt)) 6 °C, but the C-terminal deletion increased its T(opt) 6 °C. The N- and C-terminal deletions had opposing effects on the enzyme T(opt) but had additive effects on its thermostability. The five N-terminal DR deletions had more effect on the enzyme kinetics but less effect on its thermo property than the one C-terminal DR deletion. CD data showed that the terminal DR deletions increased regular secondary structural contents, and hence, led to slow decreased Gibbs free energy changes (ΔG(0)) in the thermal denaturation process, which ultimately enhanced enzyme thermostabilities. 相似文献
994.
Dale BM McNerney GP Thompson DL Hubner W de Los Reyes K Chuang FY Huser T Chen BK 《Cell host & microbe》2011,10(6):551-562
HIV-1 can infect T cells by cell-free virus or by direct virion transfer between cells through cell contact-induced structures called virological synapses (VS). During VS-mediated infection, virions accumulate within target cell endosomes. We show that after crossing the VS, the transferred virus undergoes both maturation and viral membrane fusion. Following VS transfer, viral membrane fusion occurs with delayed kinetics and transferred virions display reduced sensitivity to patient antisera compared to mature, cell-free virus. Furthermore, particle fusion requires that the transferred virions undergo proteolytic maturation within acceptor cell endosomes, which occurs over several hours. Rapid, live cell confocal microscopy demonstrated that viral fusion can occur in compartments that have moved away from the VS. Thus, HIV particle maturation activates viral fusion in target CD4+ T cell endosomes following transfer across the VS and may represent a pathway by which HIV evades antibody neutralization. 相似文献
995.
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme. 相似文献
996.
Tsai JJ Liu SH Yin SC Yang CN Hsu HS Chen WB Liao EC Lee WJ Pan HC Sheu ML 《PloS one》2011,6(9):e23249
Background
Allergic disease can be characterized as manifestations of an exaggerated inflammatory response to environmental allergens triggers. Mite allergen Der-p2 is one of the major allergens of the house dust mite, which contributes to TLR4 expression and function in B cells in allergic patients. However, the precise mechanisms of Der-p2 on B cells remain obscure.Methodology/Principal Findings
We investigated the effects of Der-p2 on proinflammatory cytokines responses and Toll-like receptor-4 (TLR4)-related signaling in human B cells activation. We demonstrated that Der-p2 activates pro-inflammatory cytokines, TLR4 and its co-receptor MD2. ERK inhibitor PD98059 significantly enhanced TLR4/MD2 expression in Der-p2-treated B cells. Der-p2 markedly activated mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) and decreased p38 phosphorylation in B cells. MKP-1-siRNA downregulated TLR4/MD2 expression in Der-p2-treated B cells. In addition, Der-p2 significantly up-regulated expression of co-stimulatory molecules and increased B cell proliferation. Neutralizing Der-p2 antibody could effectively abrogate the Der-p2-induced B cell proliferation. Der-p2 could also markedly induce NF-κB activation in B cells, which could be counteracted by dexamethasone.Conclusions/Significance
These results strongly suggest that Der-p2 is capable of triggering B cell activation and MKP-1-activated p38/MAPK dephosphorylation-regulated TLR4 induction, which subsequently enhances host immune, defense responses and development of effective allergic disease therapeutics in B cells. 相似文献997.
Wang C Xu H Chen H Li J Zhang B Tang C Ghishan FK 《American journal of physiology. Cell physiology》2011,300(2):C375-C382
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na(+)/H(+) exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na(+) absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na(+) absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway. 相似文献
998.
Strain Ochrobactrum lupine TP-D1 was found to degrade chlorothalonil (TPN) to 4-hydroxy-chlorothalonil (TPN-OH). To clone the related degrading gene, genomic library of TP-D1 was constructed using Escherichia coli DH10B and two positive clones 889 and 838 were gained. However, no plasmid was detected in clone 889. And in clone 838, a 3494 bp fragment was cloned which contains a 984 bp hydrolytic dehalogenase (chd) gene and a 1926 bp insertion element IS-Olup. The insertion element contains a transposase coding region (1026 bp), an ATP-binding protein coding region (657 bp) and flanked by 20 bp inverted repeat sequences. Further isolation provided another seven TPN-degrading strains, they belonged to the genera of Pseudomonas sp., Achromobacter sp., Ochrobactrum sp., Ralstonia sp., and Lysobacter sp. PCR strategy showed that they all contain the same structure of chd gene and the upstream IS-Olup. Our evidences collectively suggest that chd gene may be disseminated through horizontal gene transfer based on phylogenetic analysis of the cluster and their host bacterial strains. At the same time, the chd gene was amplified from genome of the positive clone 889, which also provides some potential evidence to the gene horizontal transfer. 相似文献
999.
Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis 总被引:3,自引:0,他引:3
Calcium ions (Ca(2+)) and Ca(2+)-related proteins mediate a wide array of downstream processes involved in plant responses to abiotic stresses. In Arabidopsis (Arabidopsis thaliana), disruption of the vacuolar Ca(2+)/H(+) transporters CAX1 and CAX3 causes notable alterations in the shoot ionome, including phosphate (P(i)) content. In this study, we showed that the cax1/cax3 double mutant displays an elevated P(i) level in shoots as a result of increased P(i) uptake in a miR399/PHO2-independent signaling pathway. Microarray analysis of the cax1/cax3 mutant suggests the regulatory function of CAX1 and CAX3 in suppressing the expression of a subset of shoot P(i) starvation-responsive genes, including genes encoding the PHT1;4 P(i) transporter and two SPX domain-containing proteins, SPX1 and SPX3. Moreover, although the expression of several PHT1 genes and PHT1;1/2/3 proteins is not up-regulated in the root of cax1/cax3, results from reciprocal grafting experiments indicate that the cax1/cax3 scion is responsible for high P(i) accumulation in grafted plants and that the pht1;1 rootstock is sufficient to moderately repress such P(i) accumulation. Based on these findings, we propose that CAX1 and CAX3 mediate a shoot-derived signal that modulates the activity of the root P(i) transporter system, likely in part via posttranslational regulation of PHT1;1 P(i) transporters. 相似文献
1000.
Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review 总被引:7,自引:0,他引:7
Chun-Yen Chen Kuei-Ling YehRifka Aisyah Duu-Jong LeeJo-Shu Chang 《Bioresource technology》2011,102(1):71-81
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. 相似文献