首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   11篇
  国内免费   1篇
  267篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2015年   7篇
  2014年   9篇
  2013年   5篇
  2012年   14篇
  2011年   6篇
  2010年   10篇
  2009年   16篇
  2008年   7篇
  2007年   11篇
  2006年   4篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   9篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   8篇
  1980年   3篇
  1979年   10篇
  1978年   12篇
  1977年   5篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1929年   1篇
排序方式: 共有267条查询结果,搜索用时 0 毫秒
11.
We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner.  相似文献   
12.
Mutations at the hexosaminidase A (HEXA) gene which cause Tay-Sachs disease (TSD) have elevated frequency in the Ashkenazi Jewish and French-Canadian populations. We report a novel TSD allele in the French-Canadian population associated with the infantile form of the disease. The mutation, a GA transition at the +1 position of intron 7, abolishes the donor splice site. Cultured human fibroblasts from a compound heterozygote for this transition (and for a deletion mutation) produce no detectable HEXA mRNA. The intron 7+1 mutation occurs in the base adjacent to the site of the adult-onset TSD mutation (G805A). In both mutations a restriction site for the endonuclease EcoRII is abolished. Unambiguous diagnosis, therefore, requires allele-specific oligonucleotide hybridization to distinguish between these two mutant alleles. The intron 7+1 mutation has been detected in three unrelated families. Obligate heterozygotes for the intron 7+1 mutation were born in the Saguenay-Lac-St-Jean region of Quebec. The most recent ancestors common to obligate carriers of this mutation were from the Charlevoix region of the province of Quebec. This mutation thus has a different geographic centre of diffusion and is probably less common than the exon 1 deletion TSD mutation in French Canadians. Neither mutation has been detected in France, the ancestral homeland of French Canada.  相似文献   
13.
An ABC-type transporter in Escherichia coli that transports both l- and d-methionine, but not other natural amino acids, was identified. This system is the first functionally characterized member of a novel family of bacterial permeases within the ABC superfamily. This family was designated the methionine uptake transporter (MUT) family (TC #3.A.1.23). The proteins that comprise the transporters of this family were analyzed phylogenetically, revealing the probable existence of several sequence-divergent primordial paralogues, no more than two of which have been transmitted to any currently sequenced organism. In addition, MetJ, the pleiotropic methionine repressor protein, was shown to negatively control expression of the operon encoding the ABC-type methionine uptake system. The identification of MetJ binding sites (in gram-negative bacteria) or S-boxes (in gram-positive bacteria) in the promoter regions of several MUT transporter-encoding operons suggests that many MUT family members transport organic sulfur compounds. Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
14.
15.
We have further characterized the protein kinase C (PK-C) dependent phosphorylation of basic fibroblast growth factor (FGF). Intact recombinant basic FGF and a series of ten peptide fragments of basic FGF were phosphorylated by PK-C and the products were analyzed by SDS-PAGE and autoradiography. As expected, peptide fragments containing the known site of phosphorylation (Ser64) are substrates for phosphorylation. Surprisingly however, peptides containing the receptor binding domain of the mitogen [basic FGF(106-115)] are also phosphorylated. An examination of this sequence reveals the presence of a consensus sequence (Ser108-Ala109-Lys110) that mediates the reaction. Accordingly, all peptides that contain the core amino acids basic FGF(106-111) are substrates for phosphorylation. Peptide mapping of basic FGF confirms that Ser64 is the primary site of phosphorylation, suggesting that Ser108 is a cryptic consensus sequence. Because basic FGF is metabolized to sequence specific fragments after its binding and internalization into target cells, this cryptic site may in fact be phosphorylated in vivo.  相似文献   
16.
17.
18.
19.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   
20.

Background

In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate.

Results

U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood.

Conclusion

The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction of pretreated beech wood. Thereby, this fungus combines important advantages of yeasts and filamentous fungi. Nevertheless, the biomass pretreatment does indeed affect the subsequent itaconic acid production. Although U. maydis is insusceptible to most possible impurities from pretreatment, high amounts of salts or residues of organic acids can slow microbial growth and decrease the production. Consequently, the pretreatment step needs to fit the prerequisites defined by the actual microorganisms applied for fermentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号