首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25364篇
  免费   3565篇
  国内免费   1259篇
  2024年   32篇
  2023年   158篇
  2022年   389篇
  2021年   603篇
  2020年   487篇
  2019年   588篇
  2018年   671篇
  2017年   568篇
  2016年   735篇
  2015年   1039篇
  2014年   1187篇
  2013年   1308篇
  2012年   1518篇
  2011年   1536篇
  2010年   927篇
  2009年   846篇
  2008年   1012篇
  2007年   908篇
  2006年   860篇
  2005年   746篇
  2004年   666篇
  2003年   625篇
  2002年   585篇
  2001年   2347篇
  2000年   2173篇
  1999年   1534篇
  1998年   460篇
  1997年   472篇
  1996年   393篇
  1995年   365篇
  1994年   287篇
  1993年   236篇
  1992年   731篇
  1991年   595篇
  1990年   505篇
  1989年   394篇
  1988年   313篇
  1987年   244篇
  1986年   180篇
  1985年   138篇
  1984年   89篇
  1983年   69篇
  1982年   46篇
  1981年   42篇
  1980年   27篇
  1979年   30篇
  1978年   27篇
  1976年   30篇
  1973年   30篇
  1970年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Agrobacteria are common soil bacteria that interact with plants as commensals, plant growth promoting rhizobacteria or alternatively as pathogens. Indigenous agrobacterial populations are composites, generally with several species and/or genomic species and several strains per species. We thus developed a recA-based PCR approach to accurately identify and specifically detect agrobacteria at various taxonomic levels. Specific primers were designed for all species and/or genomic species of Agrobacterium presently known, including 11 genomic species of the Agrobacterium tumefaciens complex (G1-G9, G13 and G14, among which only G2, G4, G8 and G14 still received a Latin epithet: pusense, radiobacter, fabrum and nepotum, respectively), A. larrymoorei, A. rubi, R. skierniewicense, A. sp. 1650, and A. vitis, and for the close relative Allorhizobium undicola. Specific primers were also designed for superior taxa, Agrobacterium spp. and Rhizobiaceace. Primer specificities were assessed with target and non-target pure culture DNAs as well as with DNAs extracted from composite agrobacterial communities. In addition, we showed that the amplicon cloning-sequencing approach used with Agrobacterium-specific or Rhizobiaceae-specific primers is a way to assess the agrobacterial diversity of an indigenous agrobacterial population. Hence, the agrobacterium-specific primers designed in the present study enabled the first accurate and rapid identification of all species and/or genomic species of Agrobacterium, as well as their direct detection in environmental samples.  相似文献   
992.
Anthocyanin biosynthesis requires the activities of several enzymes in vivo. Flavanone 3-hydroxylase (F3H) converts flavanone into dihydroflavanol at an early step in the anthocyanin biosynthesis pathway. In this study we constructed an RNAi gene-silencing vector that encodes a hairpin F3H RNA. Agrobacterium strain GV3101 harboring the F3H RNAi vector was injected into strawberry fruits which were still attached to the plants 14 days after pollination. The phenotype was observed 10 days postinjection, and fruits were tested by RT-PCR and northern blot assays. The results showed that the F3H gene was downregulated by approximately 70 % in the agroinfiltrated fruits compared with the control. HPLC–MS analysis showed that anthocyanin content was greatly reduced, flavonol was also decreased, and the levels of p-coumaroyl glucoside and p-coumaroyl-1-acetate were markedly increased. We conclude that the precursors were shunted to the phenylpropanoid pathway, and that F3H is one of the key enzymes required for the biosynthesis of flavonoids in strawberry fruit. According to our results, reducing gene function via RNA interference is a rapid, simple, and effective way to identify gene function in strawberry fruit.  相似文献   
993.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A?/J, C57BL?/6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15?±?0.10?mm2,?n?=?7) than C57BL?/6J (5.48?±?0.13?mm2,?n?=?10), C3H/HeJ (5.37?±?0.16?mm2,?n?=?10), and A/J mice (5.04?±?0.09?mm2,?n?=?15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n?=?4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   
994.
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50‐interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2‐like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)‐stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi‐to‐ER retrograde trafficking. Therefore, a new role for ER–Golgi membrane trafficking in abiotic‐stress and ER‐stress responses is discovered.  相似文献   
995.

Background and aims

Anthropogenic nitrogen (N) and phosphorus (P) input has changed the relative importance of nutrient elements. This study aimed to examine the effects of different nutrient conditions on the interaction between exotic and native plants.

Methods

We conducted a greenhouse experiment with a native species Quercus acutissima Carr. and an exotic species Rhus typhina L. grown in monocultures or mixtures, under three N:P ratios (5, 15 and 45 corresponding to N-limited, basic N and P supply and P-limited conditions, respectively). After 12 weeks of treatment, traits related to biomass allocation, leaf physiology and nutrient absorption were determined.

Results

R. typhina was dominant under competition, with a high capacity for carbon assimilation and nutrient absorption, and the dominance was unaffected by increasing N:P ratios. R. typhina invested more photosynthate in leaves and more nutrients in the photosynthetic apparatus, enabling high biomass production. Q. acutissima invested more photosynthate in roots and more nutrients in leaf persistence at the expense of reduced carbon assimilation capacity.

Conclusions

Different trade-offs in biomass and nutrient allocation of the two species is an important reason for their distinct performances under competition and helps R. typhina to maintain dominance under different nutrient conditions.  相似文献   
996.

Purpose

The current study aimed to test the hypothesis that the variations in shoot Cd accumulation among peanut cultivars was ascribed to the difference in capacity of competition with Fe transport, xylem loading and transpiration.

Methods

A hydroponics experiment was conducted to determine the plant biomass, gas exchange, and Cd accumulation in Fe-sufficient or -deficient plants of 12 peanut cultivars, at low Cd level (0.2 μM CdCl2).

Results

Peanut varied among cultivars in morpho-physiological response to Cd stress as well as Cd accumulation, translocation and distribution. Qishan 208 and Xvhua 13 showed a higher capacity for accumulating Cd in their shoots. Fe deficiency increased the concentration and amount of Cd in plant organs, but decreased TF root to shoot and TF root to stem, while TF stem to leaf remained unaffected. Fe deficiency-induced increase rates of Cd concentration and total Cd amount in roots and leaves were negatively correlated with the values in Fe-sufficient plants. Transpiration rate was positively correlated with leaf Cd concentration, TF root to shoot, TF root to stem and TF stem to leaf.

Conclusions

The difference in shoot Cd concentration among peanut cultivars was mainly ascribed to the difference in Fe transport system, xylem loading capacity and transpiration.  相似文献   
997.

Background and aims

Land-use change often markedly alters soil carbon (C) and nitrogen (N) pool sizes with implications for climate change and soil sustainability. The objective of this research was to study the effect of converting paddy fields to Lei bamboo (Phyllostachys praecox) stands on soil C and N and other nutrient pools as well as the chemical structure of soil organic C (SOC) in the soil profile.

Methods

Soils (Anthrosols) from four adjacent paddy field–bamboo forest pairs with a known land-use history were sampled from Lin’an County, Zhejiang Province. Soil water soluble organic C (WSOC), hot water soluble organic C (HWSOC), microbial biomass C (MBC), readily oxidizable C (ROC), water soluble organic N (WSON), and other soil chemical and physical properties were determined. Soil organic C functional group compositions were determined by 13C-nuclear magnetic resonance (NMR).

Results

Concentrations of soil available P, available K, and different N forms increased (P?<?0.05) by the land-use conversion. Higher concentrations of SOC and total N (TN) were observed in the subsoil (20–40 and 40–60 cm soil layers) but not in the topsoil (0–20 cm layer) in the bamboo stands than in the paddy fields. The storage of SOC and TN in the entire soil profile (0–60 cm) increased by 56.7 and 70.7 %, respectively, after the land-use change. The increases in the SOC stock of the three soil layers were 11.0, 14.3, and 9.5 Mg C ha?1, respectively. The conversion decreased WSOC concentrations in the subsoil but increased the ROC concentration in the topsoil. Solid-state NMR spectroscopy of soil samples showed that the conversion increased (P?<?0.05) the O-alkyl C content while decreased the aromatic C content, alkyl C to O-alkyl C ratio (A/O-A), and aromaticity of SOC.

Conclusions

Conversion of paddy fields to bamboo stands increased soil nutrient availability, and SOC and TN stocks. Effects of land-use change on C pools and C chemistry of SOC varied among different soil layers in the profile. The impact of the land-use conversion on soil organic C pools was not restricted to the topsoil, but changes in the subsoil were equally large and should be accounted for.  相似文献   
998.
999.
1000.
Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Aphthovirus within the Picornaviridae family. During infection with FMDV, several host cell membrane rearrangements occur to form sites of viral replication. FMDV protein 2C is part of the replication complex and thought to have multiple roles during virus replication. To better understand the role of 2C in the process of virus replication, we have been using a yeast two-hybrid approach to identify host proteins that interact with 2C. We recently reported that cellular Beclin1 is a natural ligand of 2C and that it is involved in the autophagy pathway, which was shown to be important for FMDV replication. Here, we report that cellular vimentin is also a specific host binding partner for 2C. The 2C-vimentin interaction was further confirmed by coimmunoprecipitation and immunofluorescence staining to occur in FMDV-infected cells. It was shown that upon infection a vimentin structure forms around 2C and that this structure is later resolved or disappears. Interestingly, overexpression of vimentin had no effect on virus replication; however, overexpression of a truncated dominant-negative form of vimentin resulted in a significant decrease in viral yield. Acrylamide, which causes disruption of vimentin filaments, also inhibited viral yield. Alanine scanning mutagenesis was used to map the specific amino acid residues in 2C critical for vimentin binding. Using reverse genetics, we identified 2C residues that are necessary for virus growth, suggesting that the interaction between FMDV 2C and cellular vimentin is essential for virus replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号