首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10971篇
  免费   1105篇
  国内免费   1303篇
  2024年   27篇
  2023年   150篇
  2022年   368篇
  2021年   618篇
  2020年   454篇
  2019年   562篇
  2018年   530篇
  2017年   389篇
  2016年   518篇
  2015年   823篇
  2014年   881篇
  2013年   941篇
  2012年   1143篇
  2011年   1020篇
  2010年   626篇
  2009年   537篇
  2008年   627篇
  2007年   508篇
  2006年   431篇
  2005年   353篇
  2004年   308篇
  2003年   274篇
  2002年   232篇
  2001年   156篇
  2000年   142篇
  1999年   114篇
  1998年   58篇
  1997年   64篇
  1996年   63篇
  1995年   44篇
  1994年   51篇
  1993年   39篇
  1992年   59篇
  1991年   39篇
  1990年   27篇
  1989年   23篇
  1988年   30篇
  1987年   23篇
  1986年   14篇
  1985年   15篇
  1984年   12篇
  1983年   21篇
  1982年   12篇
  1981年   9篇
  1980年   6篇
  1977年   4篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1965年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
281.
The X-linked form of Alport syndrome is associated with mutations in the COL4A5 gene, which is located at Xq22.3 and encodes the α5 chain of type IV collagen. Here we clinically characterized a Chinese family with Alport Syndrome, but no ocular or hearing abnormalities have been observed in any patient in the family. Through Linkage analysis and direct DNA sequencing, a novel complex deletion/insertion mutation c.359_363delGTATTinsATAC in the COL4A5 gene was identified in the family. The mutation was found in all affected family members, but was not present in the unaffected family individuals or the 200 controls. The predicted mutant protein in the family is a truncated protein consisting of only 153 residues. Our report for the first time revealed that the frameshift mutation in the type IV collagen chain α5 causes only renal disease, without extrarenal lesion. Our study broadens genotypic and phenotypic spectrum of COL4A5 mutations associated with Alport syndrome.  相似文献   
282.
283.
以单头亚菊茎段为外植体对其进行组织培养,MS为基本培养基,设置不同激素浓度配比。对实验结果进行观察分析,筛选出合适的配方。启动培养基为Ms+0.5mg·L-16-BA+0.01mg·L-1NAA。继代培养基MS+O.75mg·L-1。6-BA+0.01mg·L。NAA,可获得较高的增殖率。不定根最适诱导培养基为1/2MS+O.15mg·L—IBA,生根率达87%以上,组培苗移栽成活率达98%。  相似文献   
284.
BackgroundATM plays an important role in response to DNA damage, while the roles of ATM in radiation-induced autophagy are still unclear in cervical cancer cells.MethodsHuman cervical cancer cells, Hela, were used, and cell models with ATM?/? and MAPK14?/? were established by gene engineering. Western blot was implemented to detect protein expression. MDC staining and GFP-LC3 relocalization were used to detect autophagy. CCK-8 was used to detect cell viability. Radiosensitivity was analyzed by colony formation assays. Co-immunoprecipitation was used to detect the interaction between different proteins, and apoptosis was detected by flow cytometry.ResultsAfter radiation autophagy was induced, illustrated by the increase of MAPLC3-II/MAPLC3-I ratio and decrease of p62, and phosphorylation of ATM simultaneously increased. ATM?/? cells displayed hypersensitivity but had no influence on IR-induced apoptosis. Then inhibitor of ATM, KU55933, ATM and MAPK14 silencing were used, and autophagy was induced by IR more than 200% in control, and only by 35.72%, 53.18% and 24.76% in KU55933-treated cells, ATM?/? and MAPK14?/? cells, respectively. KU55933 inhibited IR-induced autophagy by activating mTOR pathways. ATM silencing decreased the expression of MAPK14 and mTOR signals significantly. Beclin's bond to PI3KIII and their interaction increased after IR, while in ATM?/? and MAPK14?/? cells this interaction decreased after IR. Both ATM and MAPK14 interacted with Beclin, while ATM?/? and MAPK14?/? cells showed no interaction.ConclusionsATM could promote IR-induced autophagy via the MAPK14 pathway, the mTOR pathway, and Beclin/PI3KIII complexes, which contributed to the effect of ATM on radiosensitivity.  相似文献   
285.
286.
A series of shikonin derivatives, selectively acylated by various fluorinated carboxylic acids at the side chain of shikonin, were synthesized and their anticancer activity evaluated, in which eight compounds are reported for the first time. Among all the compounds tested, compound S7 showed the most potent anticancer activity against B16‐F10 (malignant melanoma cells), MG63 (human osteosarcoma cells), and A549 (lung cancer cells) with IC50 0.39 ± 0.01, 0.72 ± 0.04 and 0.58 ± 0.02 µmol/L. Docking simulation of compound S7 was carried out to position S7 into a tubulin active site to determine the probable binding conformation. All the results suggested that compound S7 may be a potential anticancer agent. Chirality 25:757–762, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
287.
Cadherins, a large family of calcium-dependent adhesion molecules, are critical for intercellular adhesion. While crystallographic structures for several cadherins show clear structural similarities, their relevant adhesive strengths vary and their mechanisms of adhesion between types I and II cadherin subfamilies are still unclear. Here, stretching of cadherins was explored experimentally by atomic force microscopy and computationally by steered molecular dynamics (SMD) simulations, where partial unfolding of the E-cadherin ectodomains was observed. The SMD simulations on strand-swapping cadherin dimers displayed similarity in binding strength, suggesting contributions of other mechanisms to explain the strength differences of cell adhesion in vivo. Systematic simulations on the unfolding of the extracellular domains of type I and II cadherins revealed diverse pathways. However, at the earliest stage, a remarkable similarity in unfolding was observed for the various type I cadherins that was distinct from that for type II cadherins. This likely correlates positively with their distinct adhesive properties, suggesting that the initial forced deformation in type I cadherins may be involved in cadherin-mediated adhesion.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:25  相似文献   
288.
Anthocyanin biosynthesis requires the activities of several enzymes in vivo. Flavanone 3-hydroxylase (F3H) converts flavanone into dihydroflavanol at an early step in the anthocyanin biosynthesis pathway. In this study we constructed an RNAi gene-silencing vector that encodes a hairpin F3H RNA. Agrobacterium strain GV3101 harboring the F3H RNAi vector was injected into strawberry fruits which were still attached to the plants 14 days after pollination. The phenotype was observed 10 days postinjection, and fruits were tested by RT-PCR and northern blot assays. The results showed that the F3H gene was downregulated by approximately 70 % in the agroinfiltrated fruits compared with the control. HPLC–MS analysis showed that anthocyanin content was greatly reduced, flavonol was also decreased, and the levels of p-coumaroyl glucoside and p-coumaroyl-1-acetate were markedly increased. We conclude that the precursors were shunted to the phenylpropanoid pathway, and that F3H is one of the key enzymes required for the biosynthesis of flavonoids in strawberry fruit. According to our results, reducing gene function via RNA interference is a rapid, simple, and effective way to identify gene function in strawberry fruit.  相似文献   
289.
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50‐interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2‐like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)‐stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi‐to‐ER retrograde trafficking. Therefore, a new role for ER–Golgi membrane trafficking in abiotic‐stress and ER‐stress responses is discovered.  相似文献   
290.

Background and aims

Anthropogenic nitrogen (N) and phosphorus (P) input has changed the relative importance of nutrient elements. This study aimed to examine the effects of different nutrient conditions on the interaction between exotic and native plants.

Methods

We conducted a greenhouse experiment with a native species Quercus acutissima Carr. and an exotic species Rhus typhina L. grown in monocultures or mixtures, under three N:P ratios (5, 15 and 45 corresponding to N-limited, basic N and P supply and P-limited conditions, respectively). After 12 weeks of treatment, traits related to biomass allocation, leaf physiology and nutrient absorption were determined.

Results

R. typhina was dominant under competition, with a high capacity for carbon assimilation and nutrient absorption, and the dominance was unaffected by increasing N:P ratios. R. typhina invested more photosynthate in leaves and more nutrients in the photosynthetic apparatus, enabling high biomass production. Q. acutissima invested more photosynthate in roots and more nutrients in leaf persistence at the expense of reduced carbon assimilation capacity.

Conclusions

Different trade-offs in biomass and nutrient allocation of the two species is an important reason for their distinct performances under competition and helps R. typhina to maintain dominance under different nutrient conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号