首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   8篇
  108篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1992年   2篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
41.
The effects of salicylic acid (SA) and cold on apoplastic protein levels and activities of apoplastic catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) leaves. The plants were grown with and without 10 microM SA treatment at both control (20/18 degrees C for 30 and 45-day) and cold (10/5 degrees C for 30-day and 5/3 degrees C for 45-day) acclimatisations. Molecular masses of the apoplastic polypeptides were shown ranging in size from 20 to 66 kDa on SDS-PAGE. Accumulation and pattern of the polypeptides were changed by both SA and cold. It is observed that CAT, POX and PPO activities at 45-day control leaves were higher than at 30-day. When the activities with SA and cold treatments are compared to their controls, CAT activities were decreased while POX and PPO activities were increased by both the treatments. When the activities with cold+SA treatment are compared to their cold treatments, CAT and POX activities were decreased while PPO activity was increased by SA. It is concluded that exogenous SA can be involved in cold tolerance by regulating apoplastic proteins and antioxidant enzyme activities.  相似文献   
42.
Altinova AE  Yetkin I  Akbay E  Bukan N  Arslan M 《Cytokine》2008,42(2):217-221
The study was designed to examine serum IL-18 level and its relation to metabolic control parameters and microvascular complications in type 1 diabetes mellitus (DM). Sixty two patients with type 1 DM and 30 healthy individuals were enrolled in the study. Serum IL-18 levels of patients with type 1 DM were significantly increased compared to controls (293.4+/-133.4 vs 211.2+/-63.9 pg/ml, P=0.003). Patients with poor glycemic control had higher levels of IL-18 than patients with well glycemic control (329.9+/-141.0 vs 226.3+/-89.6 pg/ml, P=0.02). There was no significant difference between the serum IL-18 levels of patients with microvascular complications and those of patients without microvascular complications (307.6+/-127.6 vs 293.2+/-145.6 pg/ml, P>0.05). IL-18 correlated positively with HbA(1c) (r=0.32, P=0.01) and postprandial blood glucose (PPBG) (r=0.26, P=0.02); and negatively with HDL-cholesterol (HDL-C) (r=-0.38, P=0.007). By linear regression analysis, PPBG was determined as the most explanatory parameter for the alterations in serum IL-18 levels (P=0.02). High levels of IL-18 in patients with type 1 DM is related to short and long term glycemic control and HDL-C levels but not to microvascular complications.  相似文献   
43.
Gantulga D  Turan Y  Bevan DR  Esen A 《Phytochemistry》2008,69(8):1661-1670
The Arabidopsis genes At1g45130 and At3g52840 encode the β-galactosidase isozymes Gal-5 and Gal-2 that belong to Glycosyl Hydrolase Family 35 (GH 35). The two enzymes share 60% sequence identity with each other and 38–81% with other plant β-galactosidases that are reported to be involved in cell wall modification. We studied organ-specific expression of the two isozymes. According to our western blot analysis using peptide-specific antibodies, Gal-5 and Gal-2 are most highly expressed in stem and rosette leaves. We show by dot-immunoblotting that Gal-5 and Gal-2 are associated with the cell wall in Arabidopsis. We also report expression of the recombinant enzymes in P. pastoris and describe their substrate specificities. Both enzymes hydrolyze the synthetic substrate para-nitrophenyl-β-d-galactopyranoside and display optimal enzyme activity between pH 4.0 and 4.5, similar to the pH optimum reported for other well-characterized plant β-galactosidases. Both Gal-5 and Gal-2 show a broad specificity for the aglycone moiety and a strict specificity for the glycone moiety in that they prefer galactose and its 6-deoxy analogue, fucose. Both enzymes cleave β-(1, 4) and β-(1, 3) linkages in galacto-oligosaccharides and hydrolyze the pectic fraction of Arabidopsis cell wall. These findings suggest that Gal-5 and Gal-2 could be involved in the modification of cell wall polysaccharides.  相似文献   
44.
Plant phenolics are known to display many pharmacological activities. In the current study, eight phenolic compounds, e.g., luteolin 5‐O‐β‐glucoside ( 1 ), methyl rosmarinate ( 2 ), apigenin ( 3 ), vicenin 2 ( 4 ), lithospermic acid ( 5 ), soyasaponin II ( 6 ), rubiadin 3‐O‐β‐primeveroside ( 7 ), and 4‐(β‐d ‐glucopyranosyloxy)benzyl 3,4‐dihydroxybenzoate ( 8 ), isolated from various plant species were tested at 0.2 mm against carbonic anhydrase‐II (CA‐II) and urease using microtiter assays. Urease inhibition rate for compounds 1  –  8 ranged between 5.0 – 41.7%, while only compounds 1 , 2 , and 4 showed a considerable inhibition over 50% against CA‐II with the IC50 values of 73.5 ± 1.05, 39.5 ± 1.14, and 104.5 ± 2.50 μm , respectively, where IC50 of the reference (acetazolamide) was 21.0 ± 0.12 μm . In silico experiments were also performed through two docking softwares (Autodock Vina and i‐GEMDOCK) in order to find out interactions between the compounds and CA‐II. Actually, compounds 6 (30.0%) and 7 (42.0%) possessed a better binding capability toward the active site of CA‐II. According to our results obtained in this study, among the phenolic compounds screened, particularly 1 , 2 , and 4 appear to be the promising inhibitors of CA‐II and may be further investigated as possible leads for diuretic, anti‐glaucoma, and antiepileptic agents.  相似文献   
45.
To better understand the global effects of “natural” lesions in genes involved in the pyruvate metabolism in Mycobacterium bovis, null mutations were made in the Mycobacterium tuberculosis H37Rv ald and pykA genes to mimic the M. bovis situation. Like M. bovis, the M. tuberculosis ΔpykA mutant yielded dysgonic colonies on solid medium lacking pyruvate, whereas colony morphology was eugonic on pyruvate-containing medium. Global effects of the loss of the pykA gene, possibly underlying colony morphology, were investigated by using proteomics on cultures grown in the same conditions. The levels of Icd2 increased and those of Icl and PckA decreased in the ΔpykA knockout. Proteomics suggested that the synthesis of enzymes involved in fatty acid and lipid biosynthesis were decreased, whereas those involved in β-oxidation were increased in the M. tuberculosis ΔpykA mutant, as confirmed by direct assays for these activities. Thus, the loss of pykA from M. tuberculosis results in fatty acids being used principally for energy production, in contrast to the situation in the host when carbon from fatty acids is conserved through the glyoxylate cycle and gluconeogenesis; when an active pykA gene was introduced into M. bovis, the opposite effects occurred. Proteins involved in oxidative stress—AhpC, KatG, and SodA—showed increased synthesis in the ΔpykA mutant, and iron-regulated proteins were also affected. Ald levels were decreased in the ΔpykA knockout, explaining why an M. tuberculosis ΔpykA Δald double mutant showed little additional phenotypic effect. Overall, these data show that the loss of the pykA gene has powerful, global effects on proteins associated with central metabolism.Comparison of the genome sequences of Mycobacterium bovis and Mycobacterium tuberculosis revealed >99.95% identity at the nucleotide level; however, these pathogens differ in terms of host tropism, phenotype, and virulence (16). Eleven regions of difference (RD) were observed in the M. bovis genome (2 to 12.7 kb) compared to M. tuberculosis, while one region deleted from M. tuberculosis was present in M. bovis (5, 16). In addition to the RDs, there are over 2,400 single nucleotide polymorphisms (SNPs) between M. tuberculosis and M. bovis (16). Some SNPs cosegregate with regions of deletions or other genetic markers (5); one such SNP is in the pykA gene, which cosegregates with the RD9 deletion. This SNP results in an inactive pyruvate kinase (PykA) being produced due to a Glu220Asp mutation (20). Glu220 is in the active site of the enzyme (21, 24), and its substitution results in complete loss of the enzyme activity in M. bovis (20). Thus, the pykA SNP explains one of the classic distinctions between M. bovis and M. tuberculosis, namely, the requirement for pyruvate. Neither glycerol, the preferred carbon source for isolation of tubercle bacilli, nor glucose support the growth of M. bovis when they are not supplemented with pyruvate (38), due to the inactive pyruvate kinase.On the routinely used Middlebrook 7H11 agar, containing glycerol and oleate, M. bovis shows dysgonic colony morphology, whereas M. tuberculosis, in contrast, shows eugonic colony morphology with abundant growth. Complementation of M. bovis with the active pykA gene from M. tuberculosis restored the eugonic phenotype. Thus, loss of PykA activity commits M. bovis to using nonglycolytic substrates as carbon sources, such as lipids. This in itself is of biological significance since human M. tuberculosis switches to this kind of metabolism in experimentally infected animals or in macrophages (34, 35, 39). However, even with oleate (a lipid) as a sole carbon source which allows both species to grow, there was still a difference in colony morphology (20). This led us to consider that loss of the pykA gene had wider effects since PykA is not needed for energy production on oleate and has no role in gluconeogenesis (Fig. (Fig.1).1). Thus, we hypothesize that the loss of the pykA gene has global effects over and above the predicted effect of determining whether or not growth can take place on glycerol. To examine our hypothesis, we created a pykA mutant of M. tuberculosis to investigate the effect of pykA deletion by using isogenic strains. This builds upon our previous study in which we had complemented M. bovis with the (active) M. tuberculosis pykA gene (20). We also created a mutant in alanine dehydrogenase (H37Rv Δald) and a H37Rv Δald ΔpykA double mutant since M. bovis naturally lacks active ald and pykA genes (16). The global effects of these knockout mutations were then examined by their on growth on a range of carbon sources and on protein expression during growth on pyruvate, a gluconeogenic carbon source. A proteomic approach was chosen since it would reveal changes in all proteins, for example, regulatory proteins, enzymes, and stress proteins; key proteins, or effects of changes in their levels, could then be assayed for directly. These approaches revealed the major metabolic consequences resulting from pykA inactivation.Open in a separate windowFIG. 1.Pathways of carbon metabolism possible in strains with or without pyruvate kinase (PykA). Boxes denote substrates and/or products where arrows are used to denote pathways. Arrows to and from boxes are pathways; other arrows show reactions catalyzed by a single enzyme. Substrates are in text with serifs; pathways and enzymes in plain text. Colored arrows are used to denote glycolysis or gluconeogenesis in red, the tricarboxylic acid cycle in blue, and the glyoxylate cycle in magenta.  相似文献   
46.
Cisplatin-based chemotherapy has a variety of vascular side effects. The aim of the present study was to evaluate the beneficial effect of melatonin and cisplatin on the alterations in vascular reactivity and structure of cisplatin-treated rats. Phenylephrine (PHE) and KCl-caused concentration-dependent contractions of rat aorta. Pretreatment with cisplatin increased the sensitivity but not the max response to PHE and KCl. In rats treated with melatonin or quercetin before cisplatin, the EC50 values, but not the maximal response to both agents were significantly higher than cisplatin-treated group. Compared to the control group, cisplatin-treatment significantly reduced the luminal area of the aorta. In melatonin and quercetin-treated aortas the luminal area values were significantly higher than cisplatin-treated group. The results demonstrate for the first time that melatonin and quercetin treatment may protect the aorta in cisplatin-based chemotherapy.  相似文献   
47.
The gem-dialkyl effect has been investigated in the reactions of cyclotriphosphazene, N3P3Cl61, with various 2,2′-derivatives of 1,3-propandiol, CXY(CH2OH)2, in either THF or DCM to form spiro (6-membered) and ansa (8-membered ring) derivatives. The reactions were made with a number of symmetrically-substituted (X = Y, methyl, ethyl, n-butyl and a malonate ester) and unsymmetrically-substituted (X ≠ Y, methyl/H, phenyl/H, methyl/n-propyl, ethyl/n-butyl and Br/NO2) 1,3-propandiols. The products were analysed by 1H and 31P NMR spectroscopy and some of the spiro and ansa derivatives were also characterized by X-ray crystallography. Reactions of 1 with unsymmetrically-substituted 1,3-propandiols results in the formation of two structural isomers of ansa-substituted compounds, both isomers (endo and exo) have been structurally-characterized by X-ray crystallography for the ethyl/n-butyl derivative. It is found that the regioselectivity of the reaction is changed when the base is changed. The relative proportions of spiro and ansa compounds formed under different reaction conditions were quantified by 31P NMR measurements of the reaction mixtures. The results were rationalised mainly in terms of the electronic effect of the substituents, whereas the steric effect has a secondary role in the formation of both spiro and ansa compounds.  相似文献   
48.
Microglia, the innate immune effector cells of the CNS parenchyma, express TLR that recognize conserved motifs of microorganisms referred to as pathogen-associated molecular patterns (PAMP). All TLRs identified to date, with the exception of TLR3, use a common adaptor protein, MyD88, to transduce activation signals. Recently, we reported that microglial activation in response to the Gram-positive bacterium Staphylococcus aureus was not completely attenuated following TLR2 ablation, suggesting the involvement of additional receptors. To assess the functional role of alternative TLRs in microglial responses to S. aureus and its cell wall product peptidoglycan as well as the Gram-negative PAMP LPS, we evaluated primary microglia from MyD88 knockout (KO) and wild-type mice. The induction of TNF-alpha, IL-12 p40, and MIP-2 (CXCL2) expression by S. aureus- and peptidoglycan-stimulated microglia was MyD88 dependent, as revealed by the complete inhibition of cytokine production in MyD88 KO cells. In addition, the expression of additional pattern recognition receptors, including TLR9, pentraxin-3, and lectin-like oxidized LDL receptor-1, was regulated, in part, via a MyD88-dependent manner as demonstrated by the attenuated expression of these receptors in MyD88 KO microglia. Microglial activation was only partially inhibited in LPS-stimulated MyD88 KO cells, suggesting the involvement of MyD88-independent pathways. Collectively, these findings reveal the complex mechanisms for microglia to respond to diverse bacterial pathogens, which occur via both MyD88-dependent and -independent pathways.  相似文献   
49.
50.
Biological Trace Element Research - This study is aimed at evaluating the effect of dietary zinc-methionine (Zn-Met) supplementation during 3 months prepartum up to 9 months...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号