首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   30篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   19篇
  2015年   5篇
  2014年   16篇
  2013年   28篇
  2012年   26篇
  2011年   39篇
  2010年   19篇
  2009年   15篇
  2008年   32篇
  2007年   28篇
  2006年   31篇
  2005年   29篇
  2004年   27篇
  2003年   14篇
  2002年   14篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1985年   2篇
  1983年   5篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   10篇
  1973年   9篇
  1972年   8篇
  1971年   2篇
  1970年   2篇
排序方式: 共有521条查询结果,搜索用时 15 毫秒
341.
Ribozymes: the first 20 years   总被引:4,自引:0,他引:4  
Fedor MJ  Westhof E 《Molecular cell》2002,10(4):703-704
Twenty years have passed since the first reports that certain RNAs mediate self-splicing and precursor tRNA processing reactions in the absence of proteins. An entire field emerged to learn how RNAs that lack the chemical versatility of amino acids nonetheless assemble into enzymes that accelerate chemical reactions with efficiencies that rival those of their protein counterparts.  相似文献   
342.
343.
The present study was performed to evaluate the role of neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) during the developmental phase of hypertension in transgenic rats harboring the mouse Ren-2 renin gene (TGR). The first aim of the present study was to examine nNOS mRNA expression in the renal cortex and to assess the renal functional responses to intrarenal nNOS inhibition by S-methyl-L-thiocitrulline (L-SMTC) in heterozygous TGR and in age-matched transgene-negative Hannover Sprague-Dawley rats (HanSD). The second aim was to evaluate the role of the renal sympathetic nerves in mediating the renal functional responses to intrarenal nNOS inhibition. Thus, we also evaluated the effects of intrarenal L-SMTC administration in acutely denervated TGR and HanSD. Expression of nNOS mRNA in the renal cortex was significantly increased in TGR compared with HanSD. Intrarenal administration of L-SMTC decreased the glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion and increased renal vascular resistance (RVR) in HanSD. In contrast, intrarenal inhibition of nNOS by L-SMTC did not alter GFR, RPF or RVR and elicited a marked increase in sodium excretion in TGR. This effect of intrarenal L-SMTC was not observed in acutely denervated TGR. These results suggest that during the developmental phase of hypertension TGR exhibit an impaired renal vascular responsiveness to nNOS derived NO or an impaired ability to release NO by nNOS despite enhanced expression of nNOS mRNA in the renal cortex. In addition, the data indicate that nNOS-derived NO increases tubular sodium reabsorption in TGR and that the renal nerves play an important modulatory role in this process.  相似文献   
344.
Two new isoquinoline alkaloids, named fumaranine ( 2 ) and fumarostrejdine ( 10 ), along with 18 known alkaloids were isolated from aerial parts of Fumaria officinalis. The structures of the isolated compounds were elucidated on the basis of spectroscopic analyses and by comparison with literature data. The absolute configuration of the new compound 2 was determined by comparing its circular dichroism spectra with those of known analogs. Compounds isolated in sufficient amounts were evaluated for their acetylcholinesterase, butyrylcholinesterase, prolyl oligopeptidase (POP), and glycogen synthase kinase‐3β inhibitory activities. Parfumidine ( 8 ) and sinactine ( 15 ) exhibited potent POP inhibition activities (IC50 99±5 and 53±2 μM , resp.).  相似文献   
345.
346.
Treatment of rat brain membranes with the irreversible opioid ligand cis-3-methylfentanylisothiocyanate (Superfit) was used to reduce gradually the number of available binding sites for the delta-selective agonist [3H][D-Ser2,Leu5]enkephalin-Thr6 ([ 3H]DSLET). Subsequently, the correlation between ligand binding and low-Km GTPase was investigated. Alkylation with 10 microM and 25 microM Superfit inactivated 66% and 71% of high-affinity (KD, 1 nM) binding sites without decreasing the affinity of the remaining sites and the stimulation of low-Km GTPase by DSLET. Following exposure of the membranes to 50 microM and 75 microM Superfit, ligand binding was confined to the low-affinity (KD, 20 nM) sites. In these membranes, the delta-agonists DSLET and [D-Pen2,D-Pen5]enkephalin still stimulated low-Km GTPase, and these effects were blocked by ICI 174864 (N,N-diallyl-Tyr-AIB-AIB-Phe-Leu-OH; AIB, alpha-aminoisobutyric acid), a delta-selective antagonist. A similar relationship between low-affinity ligand binding and GTPase stimulation was observed following alkylation of the delta-opioid receptor with the non-selective irreversible antagonist beta-chlornaltrexamine in the presence of protective concentrations of DSLET. The results reveal spare receptor sites in the coupling of the delta-opioid receptor to low-Km GTPase in brain and identify low-affinity ligand binding as a functional component in the process.  相似文献   
347.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10–40°C. The fusogenic activity of the cations decreases in the sequence Ca2+ > Ba2+ > Sr2+ Mg2+ for cholesterol concentrations in the range 20–40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25°C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25°C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30°C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40°C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ > Sr2+ > Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles. The highest rate of fusion for both Ca2+- and Mg2+-induced fusion is observed with vesicles containing 30 mol% cholesterol.  相似文献   
348.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10-40 degrees C. The fusogenic activity of the cations decreases in the sequence Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+ for cholesterol concentrations in the range 20-40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25 degrees C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25 degrees C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30 degrees C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40 degrees C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ greater than Sr2+ greater than Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
349.
Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co‐evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species‐specific and obligatory mutualism: the Neotropical ant‐plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts.  相似文献   
350.
Phosphorylation of the regulatory light chain of myosin by the Ca2+/calmodulin-dependent myosin light chain kinase plays an important role in smooth muscle contraction, nonmuscle cell shape changes, platelet contraction, secretion, and other cellular processes. Smooth muscle myosin light chain kinase is also phosphorylated, and recent results from experiments designed to satisfy the criteria of Krebs and Beavo for establishing the physiological significance of enzyme phosphorylation have provided insights into the cellular regulation and function of this phosphorylation in smooth muscle. The multifunctional Ca2+/calmodulin-dependent protein kinase II phosphorylates myosin light chain kinase at a regulatory site near the calmodulin-binding domain. This phosphorylation increases the concentration of Ca2+/calmodulin required for activation and hence increases the Ca2+ concentrations required for myosin light chain kinase activity in cells. However, the concentration of cytosolic Ca2+ required to effect myosin light chain kinase phosphorylation is greater than that required for myosin light chain phosphorylation. Phosphorylation of myosin light chain kinase is only one of a number of mechanisms used by the cell to down regulate the Ca2+ signal in smooth muscle. Since both smooth and nonmuscle cells express the same form of myosin light chain kinase, this phosphorylation may play a regulatory role in cellular processes that are dependent on myosin light chain phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号