首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   16篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   8篇
  2015年   2篇
  2014年   10篇
  2013年   12篇
  2012年   16篇
  2011年   34篇
  2010年   12篇
  2009年   10篇
  2008年   15篇
  2007年   18篇
  2006年   23篇
  2005年   23篇
  2004年   15篇
  2003年   7篇
  2002年   13篇
  2001年   11篇
  2000年   17篇
  1999年   14篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1993年   2篇
  1992年   12篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有363条查询结果,搜索用时 468 毫秒
51.
The small-angle x-ray scattering (SAXS) technique is used for the investigation of two-stage equilibrium macromolecular interactions of the enzyme-substrate type in solution. Experimental procedures and methods of analyzing the data obtained from SAXS have been elaborated. The algorithm for the data analysis allows one to determine the stoichiometric, equilibrium, and structural parameters of the enzyme-substrate complexes obtained. The thermodynamic characteristics for the formation of complexes of double-stranded oligonucleotide with Eco dam methyltransferase (MTase) have been determined and demonstrate a high cooperativity of MTase binding when the ternary complex containing the dimeric enzyme is formed. The structural parameters (Rg, Rc, semiaxes) have been determined for free enzyme and polynucleotides and of enzyme-substrate complexes, indicating structural rearrangements of the enzyme in the interaction with substrates. © 1996 John Wiley & Sons, Inc.  相似文献   
52.

Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10?5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

  相似文献   
53.
The possibility of inducing apoptosis in K562 myelogenic erythroleukemia cells, A549 lung carcinoma cells, and normal human lymphocytes was studied for Bacillus intermedius RNase (binase) and its mutants Lys26 Ala and His101 Glu with impaired catalytic activity. Selective induction of apoptosis in leukemic blood cells by binase was demonstrated for the first time. Binase did not exert an antiproliferative or proapoptotic effect on peripheral blood lymphocytes of healthy donors. Low-molecular-weight (less than 50 kb in size) oligonucleosomal DNA fragments, which are early markers of apoptosis, were observed in human solid-tumor cells treated with binase. Studies with the binase mutants showed that a decrease in catalytic activity to 2.5% of the level characteristic of the wild-type enzyme deprives binase of its proapoptotic effect. The selective proapoptotic effect of binase on malignant cells provides evidence that bacterial RNases are promising for designing alternative antitumor drugs.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 457–463.Original Russian Text Copyright © 2005 by Zelenikhin, Kolpakov, Cherepnev, Ilinskaya.  相似文献   
54.
55.
High light poses a threat to oxygenic photosynthetic organisms. Similar to eukaryotes, cyanobacteria evolved a photoprotective mechanism, non-photochemical quenching (NPQ), which dissipates excess absorbed energy as heat. An orange carotenoid protein (OCP) has been implicated as a blue-green light sensor that induces NPQ in cyanobacteria. Discovered in vitro, this process involves a light-induced transformation of the OCP from its dark, orange form (OCP(o)) to a red, active form, however, the mechanisms of NPQ in vivo remain largely unknown. Here we show that the formation of the quenching state in vivo is a multistep process that involves both photoinduced and dark reactions. Our kinetic analysis of the NPQ process reveals that the light induced conversion of OCP(o) to a quenching state (OCP(q)) proceeds via an intermediate, non-quenching state (OCP(i)), and this reaction sequence can be described by a three-state kinetic model. The conversion of OCP(o) to OCP(i) is a photoinduced process with the effective absorption cross section of 4.5 × 10(-3)?2 at 470 nm. The transition from OCP(i) to OCP(q) is a dark reaction, with the first order rate constant of approximately 0.1s(-1) at 25°C and the activation energy of 21 kcal/mol. These characteristics suggest that the reaction rate may be limited by cis-trans proline isomerization of Gln224-Pro225 or Pro225-Pro226, located at a loop near the carotenoid. NPQ decreases the functional absorption cross-section of Photosystem II, suggesting that formation of the quenched centers reduces the flux of absorbed energy from phycobilisomes to the reaction centers by approximately 50%.  相似文献   
56.
Localization-based superresolution optical imaging is rapidly gaining popularity, yet limited availability of genetically encoded photoactivatable fluorescent probes with distinct emission spectra impedes simultaneous visualization of multiple molecular species in living cells. We introduce PAmKate, a monomeric photoactivatable far-red fluorescent protein, which facilitates simultaneous imaging of three photoactivatable proteins in mammalian cells using fluorescence photoactivation localization microscopy (FPALM). Successful probe identification was achieved by measuring the fluorescence emission intensity in two distinct spectral channels spanning only ∼100 nm of the visible spectrum. Raft-, non-raft-, and cytoskeleton-associated proteins were simultaneously imaged in both live and fixed fibroblasts coexpressing Dendra2-hemagglutinin, PAmKate-transferrin receptor, and PAmCherry1-β-actin fusion constructs, revealing correlations between the membrane proteins and membrane-associated actin structures.  相似文献   
57.
Syntenin-1 is a PDZ domain-containing adaptor that controls trafficking of transmembrane proteins including those associated with tetraspanin-enriched microdomains. We describe the interaction of syntenin-1 with ubiquitin through a novel binding site spanning the C terminus of ubiquitin, centered on Arg(72), Leu(73), and Arg(74). A conserved LYPSL sequence in the N terminus, as well as the C-terminal region of syntenin-1, are essential for binding to ubiquitin. We present evidence for the regulation of this interaction through syntenin-1 dimerization. We have also established that syntenin-1 is phosphorylated downstream of Ulk1, a serine/threonine kinase that plays a critical role in autophagy and regulates endocytic trafficking. Importantly, Ulk1-dependent phosphorylation of Ser(6) in the LYPSL prevents the interaction of syntenin-1 with ubiquitin. These results define an unprecedented ubiquitin-dependent pathway involving syntenin-1 that is regulated by Ulk1.  相似文献   
58.
Blue light induced quenching in a Synechocystis sp. PCC 6803 strain lacking both photosystems is only related to allophycocyanin fluorescence. A fivefold decrease in the fluorescence level in two bands near 660 and 680 nm is attributed to different allophycocyanin forms in the phycobilisome core. Some low-heat sensitive component inactivated at 53 °C is involved in the quenching process. Enormous allophycocyanin fluorescence in the absence of the photosystems reveals a dark stage in this quenching. Thus, we present evidence that light activation of the carotenoid-binding protein and formation of a quenching center within the phycobilisome core in vivo are discrete events in a multistep process.  相似文献   
59.
The goal of the present study was to define gene expression signatures that predict a chemosensitivity of nonsmall cell lung cancer (NSCLC) to cisplatin and paclitaxel. To generate a set of candidate genes likely to be predictive, current knowledge of the pathways involved in resistance and sensitivity to individual drugs was used. Forty-four genes coding proteins belonging to the following categories—ATP-dependent transport proteins, detoxification system proteins, reparation system proteins, tubulin and proteins responsible for its synthesis, cell cycle, and apoptosis proteins—were considered. Eight NSCLC cell lines (A549, Calu1, H1299, H322, H358, H460, H292, and H23) were used in our study. For each NSCLC cell line, a cisplatin and paclitaxel chemosensitivity, as well as an expression level of 44 candidate genes, were evaluated. To develop a chemosensitivity prediction model based on selected genes’ expression level, a multiple regression analysis was performed. The model based on the expression level of 11 genes (TUBB3, TXR1, MRP5, MSH2, ERCC1, STMN, SMAC, FOLR1, PTPN14, HSPA2, GSTP1) allowed us to predict the paclitaxel cytotoxic concentration with a high level of correlation (r = 0.91, p < 0.01). However, no model developed was able to reliably predict sensitivity of the NSCLC cells to cisplatin.  相似文献   
60.
Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis. We developed a way to determine microscopic pK(a) values in active ribozymes based on the pH-dependent fluorescence of 8-azaadenosine (8azaA). We compared the microscopic pK(a) for ionization of 8azaA at position 38 with the apparent pK(a) for the self-cleavage reaction in a fully functional hairpin ribozyme with a unique 8azaA at position 38. Microscopic and apparent pK(a) values were virtually the same, evidence that A38 protonation accounts for the decrease in catalytic activity with decreasing pH. These results implicate the neutral unprotonated form of A38 in a transition state that involves formation of the 5'-oxygen-phosphorus bond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号