首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3561篇
  免费   268篇
  国内免费   2篇
  2023年   27篇
  2022年   56篇
  2021年   117篇
  2020年   56篇
  2019年   80篇
  2018年   88篇
  2017年   81篇
  2016年   127篇
  2015年   197篇
  2014年   209篇
  2013年   252篇
  2012年   315篇
  2011年   245篇
  2010年   163篇
  2009年   142篇
  2008年   171篇
  2007年   181篇
  2006年   175篇
  2005年   160篇
  2004年   127篇
  2003年   129篇
  2002年   117篇
  2001年   37篇
  2000年   35篇
  1999年   35篇
  1998年   24篇
  1997年   18篇
  1996年   17篇
  1995年   22篇
  1994年   17篇
  1993年   16篇
  1992年   11篇
  1991年   28篇
  1990年   21篇
  1989年   24篇
  1988年   26篇
  1987年   23篇
  1986年   18篇
  1985年   20篇
  1984年   25篇
  1983年   18篇
  1982年   14篇
  1980年   16篇
  1979年   14篇
  1978年   11篇
  1975年   13篇
  1973年   13篇
  1971年   9篇
  1969年   9篇
  1968年   19篇
排序方式: 共有3831条查询结果,搜索用时 31 毫秒
901.
Secretory lysosomes are lysosomes which are capable of undergoing regulated secretion in response to external stimuli. Many cells of the immune system use secretory lysosomes to release proteins involved in their specialised effector mechanisms. Precisely how lysosomal secretion is regulated in each of these cell types is now the study of much research as these mechanisms control the ability of each of these cells to function. Studies on a number of human genetic diseases have identified some key proteins in controlling secretory lysosome release, and now many interacting partners have been identified. The different regulatory components seem to vary from one cell type to another, providing a multitude of ways for fine tuning the release of secretory lysosomes.  相似文献   
902.
Leukemia inhibitory factor (LIF) and oncostatin M (OSM) induce DNA synthesis in Swiss 3T3 cells through common signaling mechanism(s), whereas other related cytokines such as interleukin-6 and ciliary neurotrophic factor do not cause this response. Induction of DNA replication by LIF or prostaglandin F2alpha (PGF2alpha) occurs, in part, through different signaling events. LIF and OSM specifically trigger STAT1 cytoplasmic to nuclear translocation, whereas PGF2alpha fails to do so. However, LIF and PGF2alpha can trigger increases in ERK1/2 activity, which are required for their mitogenic responses because U0126, a MEK1/2 inhibitor, prevents both ERK1/2 activation and induction of DNA synthesis by LIF or PGF2alpha treatment. PGF2alpha induces cyclin D expression and full phosphorylation of retinoblastoma protein. In contrast, LIF fails to promote increases in cyclin D mRNA/protein levels; consequently, LIF induces DNA synthesis without promoting full phosphorylation of retinoblastoma protein (Rb). However, both LIF and PGF2alpha increase cyclin E expression. Furthermore, LIF mitogenic action does not involve protein kinase C (PKC) activation, because a PKC inhibitor does not block this effect. In contrast, PKC activity is required for PGF2alpha mitogenic action. More importantly, the synergistic effect between LIF and PGF2alpha to promote S phase entry is independent of PKC activation. These results show fundamental differences between LIF- and PGF2alpha-dependent mechanism(s) that induce cellular entry into S phase. These findings are critical in understanding how LIF and other related cytokine-regulated events participate in normal cell cycle control and may also provide clues to unravel crucial processes underlying cancerous cell division.  相似文献   
903.
In this report, we have developed a novel method to identify compounds that rescue the dystrophin-glycoprotein complex (DGC) in patients with Duchenne or Becker muscular dystrophy. Briefly, freshly isolated skeletal muscle biopsies (termed skeletal muscle explants) from patients with Duchenne or Becker muscular dystrophy were maintained under defined cell culture conditions for a 24-h period in the absence or presence of a specific candidate compound. Using this approach, we have demonstrated that treatment with a well-characterized proteasome inhibitor, MG-132, is sufficient to rescue the expression of dystrophin, -dystroglycan, and -sarcoglycan in skeletal muscle explants from patients with Duchenne or Becker muscular dystrophy. These data are consistent with our previous findings regarding systemic treatment with MG-132 in a dystrophin-deficient mdx mouse model (Bonuccelli G, Sotgia F, Schubert W, Park D, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, and Lisanti MP. Am J Pathol 163: 1663–1675, 2003). Our present results may have important new implications for the possible pharmacological treatment of Duchenne or Becker muscular dystrophy in humans. muscular dystrophy; membrane proteins; MG-132  相似文献   
904.
Herbaspirillum seropedicae Z67 is a nitrogen-fixing bacterium able to colonize the rhizosphere and the interior of several plants. As iron is a key element for nitrogen fixation, we examined the response of this microorganism to iron deficiency under nitrogen fixing conditions. We identified a H. seropedicae exbD gene that was induced in response to iron limitation and is involved in iron homeostasis. We found that an exbD mutant grown in iron-chelated medium is unable to fix nitrogen. Moreover, we provide evidence that expression of the nifH and nifA genes is iron dependent in a H. seropedicae genetic background.  相似文献   
905.
The endophyte Azoarcus sp. strain BH72 expresses nitrogenase (nif) genes inside rice roots. We applied a proteomic approach to dissect responses of rice roots toward bacterial colonization and jasmonic acid (JA) treatment. Two sister lineages of Oryza sativa were analyzed with cv. IR42 showing a less compatible interaction with the Azoarcus sp. resulting in slight root browning whereas cv. IR36 was successfully colonized as determined by nifHi::gusA activity. External addition of JA inhibited colonization of roots and caused browning in contrast to the addition of ethylene, applied as ethephon (up to 5 mM). Only two of the proteins induced in cv. IR36 by JA were also induced by the endophyte (SalT, two isoforms). In contrast, seven JA-induced proteins were also induced by bacteria in cv. IR42, indicating that IR42 showed a stronger defense response. Mass spectrometry analysis identified these proteins as pathogenesis-related (PR) proteins (Prb1, RSOsPR10) or proteins sharing domains with receptorlike kinases induced by pathogens. Proteins strongly induced in roots in both varieties by JA were identified as Bowman-Birk trypsin inhibittors, germinlike protein, putative endo-1,3-beta-D-glucosidase, glutathion-S-transferase, and 1-propane-1-carboxylate oxidase synthase, peroxidase precursor, PR10-a, and a RAN protein previously not found to be JA-induced. Data suggest that plant defense responses involving JA may contribute to restricting endophytic colonization in grasses. Remarkably, in a compatible interaction with endophytes, JA-inducible stress or defense responses are apparently not important.  相似文献   
906.
Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.  相似文献   
907.
A conserved fragment comprising amino acid residues 130-230 of the G glycoprotein of human respiratory syncytial virus subtype A was expressed in the commensal bacterium Streptococcus gordonii. Recombinant streptococci displaying the G domain at the cell surface were used to immunize mice via both parenteral and mucosal routes. Subcutaneous immunization induced respiratory syncytial virus-specific serum immunoglobin G (IgG) capable of partially controlling virus replication in the lungs. Intranasal immunization with live bacteria stimulated the production of IgA against both the whole virus and the G domain in serum and bronchoalveolar fluid. Upon challenge, immunized animals had significantly lower virus titres in the lungs than the controls. Our results show for the first time that the G domain-expressing S. gordonii strain elicits both systemic and mucosal immunity that reduced respiratory syncytial virus replication in the lungs of mice.  相似文献   
908.
Summary. The objective of this study was to examine the in vivo effect of melatonin on rat mitochondrial liver respiration. Two experiments were performed: For experiment 1, adult male rats received melatonin in the drinking water (16 or 50 μg/ml) or vehicle during 45 days. For experiment 2, rats received melatonin in the drinking water (50 μg/ml) for 45 days, or the same amount for 30 days followed by a 15 day-withdrawal period. At sacrifice, a liver mitochondrial fraction was prepared and oxygen consumption was measured polarographically in the presence of excess concentration of DL-3-β-hydroxybutyrate or L-succinate. Melatonin treatment decreased Krebs’ cycle substrate-induced respiration significantly at both examined doses. The stimulation of mitochondrial respiration caused by excess concentration of substrate recovered after melatonin withdrawal. Basal state 4 respiration was not modified by melatonin. Melatonin, by curtailing overstimulation of cellular respiration caused by excess Krebs’ cycle substrates, can protect the mitochondria from oxidative damage.  相似文献   
909.
910.
Two main patterns of gene expression of Streptococcus pneumoniae were observed during infection in the host by quantitative real time RT-PCR; one was characteristic of bacteria in blood and one of bacteria in tissue, such as brain and lung. Gene expression in blood was characterized by increased expression of pneumolysin, pspA and hrcA, while pneumococci in tissue infection showed increased expression of neuraminidases, metalloproteinases, oxidative stress and competence genes. In vitro situations with similar expression patterns were detected in liquid culture and in a newly developed pneumococcal model of biofilm respectively. The biofilm model was dependent on addition of synthetic competence stimulating peptide (CSP) and no biofilm was formed by CSP receptor mutants. As one of the differentially expressed gene sets in vivo were the competence genes, we exploited competence-specific tools to intervene on pneumococcal virulence during infection. Induction of the competence system by the quorum-sensing peptide, CSP, not only induced biofilm formation in vitro, but also increased virulence in pneumonia in vivo. In contrast, a mutant for the ComD receptor, which did not form biofilm, also showed reduced virulence in pneumonia. These results were opposite to those found in a bacteraemic sepsis model of infection, where the competence system was downregulated. When pneumococci in the different physiological states were used directly for challenge, sessile cells grown in a biofilm were more effective in inducing meningitis and pneumonia, while planktonic cells from liquid culture were more effective in inducing sepsis. Our data enable us, using in vivo gene expression and in vivo modulation of virulence, to postulate the distinction - from the pneumococcal point of view - between two main types of disease. During bacteraemic sepsis pneumococci resemble planktonic growth, while during tissue infection, such as pneumonia or meningitis, pneumococci are in a biofilm-like state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号