首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3548篇
  免费   268篇
  国内免费   2篇
  2023年   21篇
  2022年   51篇
  2021年   117篇
  2020年   56篇
  2019年   80篇
  2018年   88篇
  2017年   81篇
  2016年   127篇
  2015年   197篇
  2014年   209篇
  2013年   252篇
  2012年   315篇
  2011年   245篇
  2010年   163篇
  2009年   142篇
  2008年   171篇
  2007年   181篇
  2006年   175篇
  2005年   160篇
  2004年   127篇
  2003年   129篇
  2002年   117篇
  2001年   37篇
  2000年   35篇
  1999年   35篇
  1998年   24篇
  1997年   18篇
  1996年   17篇
  1995年   22篇
  1994年   17篇
  1993年   16篇
  1992年   11篇
  1991年   28篇
  1990年   21篇
  1989年   24篇
  1988年   26篇
  1987年   23篇
  1986年   18篇
  1985年   20篇
  1984年   25篇
  1983年   18篇
  1982年   14篇
  1980年   16篇
  1979年   14篇
  1978年   11篇
  1975年   13篇
  1973年   13篇
  1971年   9篇
  1969年   9篇
  1968年   19篇
排序方式: 共有3818条查询结果,搜索用时 500 毫秒
881.
882.
Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts.  相似文献   
883.
884.
Niemann-Pick C disease (NPC) is a neuro-visceral lysosomal storage disorder mainly caused by genetic defects in the NPC1 gene. As a result of loss of NPC1 function large quantities of free cholesterol and other lipids accumulate within late endosomes and lysosomes. In NPC livers and brains, the buildup of lipids correlates with oxidative damage; however the molecular mechanisms that trigger it remain unknown. Here we study potential alterations in vitamin E (α-tocopherol, α-TOH), the most potent endogenous antioxidant, in liver tissue and neurons from NPC1 mice. We found increased levels of α-TOH in NPC cells. We observed accumulation and entrapment of α-TOH in NPC neurons, mainly in the late endocytic pathway. Accordingly, α-TOH levels were increased in cerebellum of NPC1 mice. Also, we found decreased mRNA levels of the α-TOH transporter, α-Tocopherol Transfer Protein (α-TTP), in the cerebellum of NPC1 mice. Finally, by subcellular fractionation studies we detected a significant increase in the hepatic α-TOH content in purified lysosomes from NPC1 mice. In conclusion, these results suggest that NPC cells cannot transport vitamin E correctly leading to α-TOH buildup in the endosomal/lysosomal system. This may result in a decreased bioavailability and impaired antioxidant function of vitamin E in NPC, contributing to the disease pathogenesis.  相似文献   
885.
Chromatin is a dynamic structure formed mainly by DNA and histones, and chemical modifications on these elements regulate its compaction. Histone posttranslational modifications (PTMs) have a direct impact on chromatin conformation, controlling important cellular events such as cell proliferation and differentiation. Redox-related posttranslational modifications may have important effects on chromatin structure and function, offering a new intriguing area of research termed "redox epigenetics." Little is known about histone carbonylation, a PTM that may be related to modifications in the cellular redox environment. The aim of our study was to determine the carbonylation of the various histones during cell proliferation, a moment in cell life during which important redox changes take place. Here, we describe changes in histone carbonylation during cell proliferation in NIH3T3 fibroblasts. In addition, we have studied the variations of poly(ADP-ribosyl)ation and phospho-H2AX at the same time, because both modifications are related to DNA damage responses. High levels of carbonylation on specific histones (H1, H1(0), and H3.1 dimers) were found when cells were in an active phase of DNA synthesis. The modification decreased when nuclear proteasome activity was activated. However, these results did not correlate completely with poly(ADP-ribosyl)ation and phospho-H2AX levels. Therefore, histone carbonylation may represent a specific event during cell proliferation. We describe a new methodology named oxy-2D-TAU Western blot that allowed us to separate and analyze the carbonylation patterns of the histone variants. In addition we offer a new role for histone carbonylation and its implication in redox epigenetics. Our results suggest that histone carbonylation is involved in histone detoxification during DNA synthesis.  相似文献   
886.
Human lysine-specific demethylase (LSD1) is a chromatin-modifying enzyme that specifically removes methyl groups from mono- and dimethylated Lys4 of histone H3 (H3-K4). We used a combination of in vivo and in vitro experiments to characterize the substrate specificity and recognition by LSD1. Biochemical assays on histone peptides show that essentially all epigenetic modifications on the 21 N-terminal amino acids of histone H3 cause a significant reduction in enzymatic activity. Replacement of Lys4 with Arg greatly enhances binding affinity, and a histone peptide incorporating this mutation has a strong inhibitory power. Conversely, a peptide bearing a trimethylated Lys4 is only a weak inhibitor of the enzyme. Rapid kinetics measurements evidence that the enzyme is efficiently reoxidized by molecular oxygen with a second-order rate constant of 9.6x10(3) M-1 s-1, and that the presence of the reaction product does not greatly influence the rate of flavin reoxidation. In vivo experiments provide a correlation between the in vitro inhibitory properties of the tested peptides and their ability of affecting endogenous LSD1 activity. Our results show that epigenetic modifications on histone H3 need to be removed before Lys4 demethylation can efficiently occur. The complex formed by LSD1 with histone deacetylases 1/2 may function as a "double-blade razor" that first eliminates the acetyl groups from acetylated Lys residues and then removes the methyl group from Lys4. We suggest that after H3-K4 demethylation, LSD1 recruits the forthcoming chromatin remodelers leading to the introduction of gene repression marks.  相似文献   
887.
Dialysis-related amyloidosis is characterized by the deposition of insoluble fibrils of beta(2)-microglobulin (beta(2)-m) in the musculoskeletal system. Atomic force microscopy inspection of ex vivo amyloid material reveals the presence of bundles of fibrils often associated to collagen fibrils. Aggregation experiments were undertaken in vitro with the aim of reproducing the physiopathological fibrillation process. To this purpose, atomic force microscopy, fluorescence techniques, and NMR were employed. We found that in temperature and pH conditions similar to those occurring in periarticular tissues in the presence of flogistic processes, beta(2)-m fibrillogenesis takes place in the presence of fibrillar collagen, whereas no fibrils are obtained without collagen. Moreover, the morphology of beta(2)-m fibrils obtained in vitro in the presence of collagen is extremely similar to that observed in the ex vivo sample. This result indicates that collagen plays a crucial role in beta(2)-m amyloid deposition under physiopathological conditions and suggests an explanation for the strict specificity of dialysis-related amyloidosis for the tissues of the skeletal system. We hypothesize that positively charged regions along the collagen fiber could play a direct role in beta(2)-m fibrillogenesis. This hypothesis is sustained by aggregation experiments performed by replacing collagen with a poly-L-lysine-coated mica surface. As shown by NMR measurements, no similar process occurs when poly-L-lysine is dissolved in solution with beta(2)-m. Overall, the findings are consistent with the estimates resulting from a simplified collagen model whereby electrostatic effects can lead to high local concentrations of oppositely charged species, such as beta(2)-m, that decay on moving away from the fiber surface.  相似文献   
888.
Acetaminophen overdose is a leading cause of drug-related acute liver failure in the United States. Glutathione, a tripeptide antioxidant protects cells against oxidative damage from reactive oxygen species and plays a crucial role in the detoxification of xenobiotics, including acetaminophen. Glutathione is synthesized in a two-step enzymatic reaction. Glutamate-cysteine ligase carries out the rate-limiting and first step in glutathione synthesis. We have generated C57Bl/6 mice that conditionally overexpress glutamate-cysteine ligase, and report here their resistance to acetaminophen-induced liver injury. Indices of liver injury included histopathology and serum alanine aminotransferase activity. Male transgenic mice induced to overexpress glutamate-cysteine ligase exhibited resistance to acetaminophen-induced liver injury when compared with acetaminophen-treated male mice carrying, but not expressing glutamate-cysteine ligase transgenes, or to female glutamate-cysteine ligase transgenic mice. We conclude that glutamate-cysteine ligase activity is an important factor in determining acetaminophen-induced liver injury in C57Bl/6 male mice. Because people are known to vary in their glutamate-cysteine ligase activity, this enzyme may also be an important determinant of sensitivity to acetaminophen-induced liver injury in humans.  相似文献   
889.
The diagnosis of AD is still largely based on exclusion criteria of secondary causes and other forms of dementia with similar clinical pictures, than the diagnostic accuracy of AD is low. Improved methods of early diagnosis are needed, particularly because drugs treatment is more effective in the early stages of the disease. Recent research focused the attention to biochemical diagnostic markers (biomarkers) and according to the proposal of a consensus group on biomarkers, three candidate CSF markers reflecting the pathological AD processes, have recently been identified: total tau protein (t-tau), amyloid beta(1-42) protein (A beta42), and tau protein phosphorylated at AD-specific epitopes (p-tau). Several articles report reduced CSF levels of A beta42 and increased CSF levels of t-tau and p-tau in AD; the sensitivity and specificity of these data are able for discrimination of AD patients from controls. However, the specificity for other dementias is low. According to the literature analysis reported in the present review, we can conclude that the combination of the CSF markers and their ratios may significantly increase the specificity and the accuracy of AD diagnosis.  相似文献   
890.
We report on the development of the F64L/S65T/T203Y/L231H GFP mutant (E2GFP) as an effective ratiometric pH indicator for intracellular studies. E2GFP shows two distinct spectral forms that are convertible upon pH changes both in excitation and in emission with pK close to 7.0. The excitation of the protein at 488 and 458 nm represents the best choice in terms of signal dynamic range and ratiometric deviation from the thermodynamic pK. This makes E2GFP ideally suited for imaging setups equipped with the most widespread light sources and filter settings. We used E2GFP to determine the average intracellular pH (pH(i)) and spatial pH(i) maps in two different cell lines, CHO and U-2 OS, under physiological conditions. In CHO, we monitored the evolution of the pH(i) during mitosis. We also showed the possibility to target specific subcellular compartments such as nucleoli (by fusing E2GFP with the transactivator protein of HIV, (Tat) and nuclear promyelocytic leukemia bodies (by coexpression of promyelocytic leukemia protein).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号