首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2842篇
  免费   221篇
  国内免费   1篇
  3064篇
  2024年   6篇
  2023年   24篇
  2022年   50篇
  2021年   107篇
  2020年   47篇
  2019年   77篇
  2018年   73篇
  2017年   70篇
  2016年   115篇
  2015年   181篇
  2014年   188篇
  2013年   217篇
  2012年   269篇
  2011年   209篇
  2010年   152篇
  2009年   121篇
  2008年   151篇
  2007年   144篇
  2006年   146篇
  2005年   130篇
  2004年   100篇
  2003年   92篇
  2002年   89篇
  2001年   18篇
  2000年   17篇
  1999年   20篇
  1998年   13篇
  1997年   9篇
  1996年   11篇
  1995年   17篇
  1994年   12篇
  1993年   10篇
  1991年   11篇
  1990年   10篇
  1989年   7篇
  1988年   13篇
  1987年   7篇
  1986年   9篇
  1985年   15篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1980年   10篇
  1979年   7篇
  1978年   6篇
  1977年   12篇
  1973年   5篇
  1969年   7篇
  1968年   4篇
  1962年   4篇
排序方式: 共有3064条查询结果,搜索用时 22 毫秒
41.
A competitive radioimmunoassay for the quantitation of diamine oxidase (EC 1.4.3.6) from Lens culinaris is reported. Specific antibodies raised in rabbits immunized with a homogeneous preparation of the enzyme were incubated with purified 125I-enzyme and with either unlabeled diamine oxidase or plant material. Antigen-antibody complexes were isolated from the mixture by incubation with Staphylococcus protein A. The sensitivity of the test was about 5 nanograms in terms of enzyme protein. This assay was applied to the determination of the enzyme in extracts from lentil shoots grown either in the dark or in the light. Diamine oxidase activity and enzyme protein (as determined by radioimmunoassay) were measured during 7 days after germination. Both enzymic activity and enzyme protein declined slowly in the dark and rapidly in the light. These results indicate that fluctuation of the enzymic activity in this organ, both in the light and in the dark, are mediated via changes in the amount of the enzyme protein and not via the action of an inhibitor.  相似文献   
42.

Background  

Independent surveys of human gene promoter regions have demonstrated an overrepresentation of G3X n1G3X n2G3X n3G3 motifs which are known to be capable of forming intrastrand quadruple helix structures. In spite of the widely recognized importance of G-quadruplex structures in gene regulation and growing interest around this unusual DNA structure, there are at present only few such structures available in the Nucleic Acid Database. In the present work we generate by molecular modeling feasible G-quadruplex structures which may be useful for interpretation of experimental data.  相似文献   
43.
Extinction performance is often used to assess underlying psychological processes without the interference of reinforcement. For example, in the extinction/reinstatement paradigm, motivation to seek drug is assessed by measuring responding elicited by drug-associated cues without drug reinforcement. However, extinction performance is governed by several psychological processes that involve motivation, memory, learning, and motoric functions. These processes are confounded when overall response rate is used to measure performance. Based on evidence that operant responding occurs in bouts, this paper proposes an analytic procedure that separates extinction performance into several behavioral components: (1-3) the baseline bout initiation rate, within-bout response rate, and bout length at the onset of extinction; (4-6) their rates of decay during extinction; (7) the time between extinction onset and the decline of responding; (8) the asymptotic response rate at the end of extinction; (9) the refractory period after each response. Data that illustrate the goodness of fit of this analytic model are presented. This paper also describes procedures to isolate behavioral components contributing to extinction performance and make inferences about experimental effects on these components. This microscopic behavioral analysis allows the mapping of different psychological processes to distinct behavioral components implicated in extinction performance, which may further our understanding of the psychological effects of neurobiological treatments.  相似文献   
44.
45.

Pulsatile flow inside a moderately elastic circular conduit with a smooth expansion is studied as a model to understand the influence of wall elasticity in artery flow. The solution of the simultaneous fluid-wall evolution is evaluated by a perturbative method, where the zeroth order solution is represented by the flow in a rigid vessel; the first order correction gives the wall motion and induced flow modification without the need to solve the difficult coupled problem. Such an approach essentially assumes a locally infinite celerity, therefore it represent a good approximation for the fluid-wall interaction in sites of limited extent (branches, stenosis, aneurism, etc.), which include typical situations associated with vascular diseases. The problem is solved numerically in the axisymmetric approximation; the influence of wall elasticity on the flow and on the unsteady wall shear stress is studied in correspondence of parameters taken from realistic artery flow. Attention is posed to the role of phase difference between the incoming pressure and flow pulses.  相似文献   
46.
47.
Summary A biometric analysis of body proportions with presumably functional meaning for microhabitat selection was made on 12 species of Liolaemus lizards in central Chile. Characters studied were forelimb length, hindlimb length, tail length (all standardized by the corresponding snout-vent length), and the ratio forelimb/hindlimb length. It is shown that irrespective of terrestrial, saxicolous, or arboreal habits, Liolaemus species are remarkably similar in body proportions. The only exceptions are: L. lemniscatus, an open ground-dweller which exhibits significantly shorter limbs; and L. chiliensis and L. schroederi, both shrub-climbers which exhibit significantly longer tail. It is concluded that the adaptive radiation of Liolaemus lizards in central Chile has been accomplished mainly by diversification of activity time, food size, and microhabitat type. Morphological divergence in body proportions seems to have played an unimportant role.  相似文献   
48.
The role of the kinetochore during meiotic chromosome segregation in C. elegans oocytes has been a matter of controversy. Danlasky et al. (2020. J. Cell. Biol. https://doi.org/10.1083/jcb.202005179) show that kinetochore proteins KNL-1 and KNL-3 are required for early stages of anaphase during female meiosis, suggesting a new kinetochore-based model of chromosome segregation.

Meiosis consists of two consecutive chromosome segregation events preceded by a single round of DNA replication. Homologous chromosomes are separated in meiosis I, which is followed by sister chromatid separation in meiosis II to produce haploid gametes. Both of these stages require chromosomes/chromatids to align during metaphase before separating to opposite poles during anaphase. During mitosis, microtubules emanating from centrosomes at opposite poles of the cell bind chromosomes through a multiprotein complex called the kinetochore, allowing chromosomes to be pulled apart (1, 2). This segregation event takes place in two stages: anaphase A, where chromosomes are pulled toward spindle poles due to microtubule depolymerization, and anaphase B, where spindle poles themselves move farther apart, taking the attached chromosomes with them (3, 4). In many organisms, including mammals, oocytes lack centrosomes, and it has been of great interest to clarify the mechanisms used to ensure chromosomes are properly segregated during female meiosis (5, 6). Caenorhabditis elegans has served as a model for studying both mitosis and meiosis, but the mechanisms operating during female meiosis have been a matter of debate and controversy.In 2010, Dumont et al. showed that the kinetochore is required for chromosome alignment and congression during metaphase (7). However, they suggested that chromosome segregation was the result of microtubule polymerization between the segregating chromosomes (Fig. 1), resulting in a pushing force exerted onto chromosomes toward the spindle poles in a largely kinetochore-independent manner (7). This mechanism was also supported by the finding that CLIP-associated protein (CLASP)–dependent microtubule polymerization between the segregating chromosomes is essential for chromosome separation (8). An alternative model suggested that chromosomes are transported through microtubule-free channels toward the spindle poles by the action of dynein (9). Later evidence put in doubt a role for dynein and favored a model in which chromosomes initially separate when the spindle shortens and the poles overlap with chromosomes in an anaphase A–like mechanism. This is then followed by separation of chromosome-bound poles by outward microtubule sliding in an anaphase B–like fashion (10). However, because microtubules emanating from the spindle poles are not required to separate the homologous chromosomes but microtubules between the separating chromosomes are (8), this model is unlikely, at least as an explanation for mid-/late-anaphase movement. Furthermore, although lateral microtubule interactions with chromosomes predominate during metaphase of C. elegans oocyte meiosis, cryo-electron tomography data described end-on attachments between the separating chromosomes as anaphase progresses (11). This led to the suggestion that lateral microtubule interactions with chromosomes are responsible for the initial separation, but microtubule polymerization between the separating chromosomes is required for the later stages of segregation (11). The mechanisms involved in this initial separation have remained obscure. In this issue, Danlasky et al. show that the kinetochore is in fact required for the initial stages of chromosome segregation during female meiosis—an important step forward in our understanding of the mechanisms governing acentrosomal chromosome segregation (12).Open in a separate windowFigure 1.Some of the key findings in Danlasky et al. Kinetochore proteins surround the outer surface of the chromosomes, resulting in a characteristic cup shape. As anaphase progresses, chromosomes come into close contact to the spindle poles (anaphase A). Chromosome stretching is provided by KNL-1, MIS-12 (KNL-3), and NDC-80 (KMN)–dependent forces. Once the spindle starts elongating (anaphase B), central spindle microtubules provide the pushing forces for chromosome segregation. At this stage, kinetochore proteins also occupy the inward face of separating chromosomes. Upon KMN network depletion, bivalents flatten, and chromosome congression and alignment are defective. Anaphase A chromosome movement is almost absent, which leads to error-prone anaphase B.By simultaneously depleting kinetochore proteins KNL-1 and KNL-3 in C. elegans, Danlasky et al. observed the meiotic chromosome congression and alignment defects described in previous studies (7). However, this double-depletion phenotype displayed three key characteristics that suggested a role for kinetochores in chromosome segregation, which are discussed below.The kinetochore is required for bivalent stretching. It was previously shown that the bivalent chromosomes stretch before the initiation of segregation (10). Danlasky et. al found that this stretching of the chromosomes did not occur when KNL-1,3 were depleted, indicating that the kinetochore is required for this process (Fig. 1). Together with the observation that kinetochore proteins appear to extend toward the spindle poles, this finding suggested that pulling forces resulting from the interaction between the kinetochore and spindle microtubules are occurring during metaphase/preanaphase (Fig. 1).The kinetochore is required for anaphase A. In C. elegans female meiosis, anaphase A occurs when homologous chromosomes begin to separate during spindle shortening, and anaphase B when the chromosomes separate alongside the spindle poles (10). Danlasky et al. observed that KNL-1,3 depletion drastically reduced the velocity of anaphase A, as chromosomes only separated when spindle poles began to move apart. This indicated that pulling forces caused by the interaction between the kinetochore and spindle microtubules are also important for the initial separation of homologous chromosomes in anaphase A.The kinetochore is required for proper separation of homologous chromosomes. In KNL-1,3 depletion strains, 60% of bivalents failed to separate before segregation began, resulting in intact bivalents being pulled to the same spindle pole (Fig. 1). This failure of homologous chromosomes to separate was not thought to be a result of KNL-1,3 depletion interfering with the cleavage of cohesin that holds the two homologous chromosomes together because (a) separase and AIR-2AuroraB, both of which are required for cohesin cleavage, localized normally during metaphase and anaphase, and (b) bivalents separated by metaphase II. This leaves the possibility open that the failure of bivalents to separate was due to the disrupted pulling forces thought to be important in bivalent stretching and anaphase A.Altogether, these data strongly indicate that the kinetochore is required not only for chromosome congression and alignment but also for the early stages of homologue separation. Anaphase B occurred successfully in the absence of KNL-1,3 but was more error prone, likely as a result of the earlier congression and anaphase A defects. While it is clear that chromosome masses do segregate in the absence of the kinetochore, this segregation is highly erroneous as a result of defects during the earlier stages of segregation in anaphase A (Fig. 1).The findings of Danlasky et al. raise testable hypotheses that could significantly enhance our understanding of acentrosomal chromosome segregation. Further investigation of the proposed pulling forces required during metaphase and early anaphase will be of great interest. Additionally, a more detailed analysis of the dynamic localization of separase and Securin, as well as assessing successful cohesin cleavage when KNL-1,3 are depleted, would back up the assertion that the failure of homologous chromosomes to separate was not due to the kinetochore impacting cohesin cleavage. It has previously been shown that the CLASP orthologue CLS-2 in C. elegans localizes to the kinetochore surrounding the bivalent chromosomes during metaphase before relocalizing to the central spindle during anaphase (7, 8, 13). It will be interesting to examine whether this key microtubule-stabilizing protein contributes to anaphase A pulling forces alongside its essential role in microtubule polymerization between chromosomes in anaphase B (8).While the regulation of proper chromosome segregation during acentrosomal meiosis in C. elegans is not yet fully understood, Danlasky et al.’s results represent a significant step forward in this endeavor by showing that the kinetochore is in fact required for the early stages of chromosome segregation.  相似文献   
49.
50.
A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号