首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2697篇
  免费   216篇
  国内免费   1篇
  2024年   4篇
  2023年   19篇
  2022年   40篇
  2021年   102篇
  2020年   47篇
  2019年   73篇
  2018年   72篇
  2017年   69篇
  2016年   110篇
  2015年   179篇
  2014年   182篇
  2013年   209篇
  2012年   259篇
  2011年   200篇
  2010年   145篇
  2009年   119篇
  2008年   146篇
  2007年   145篇
  2006年   140篇
  2005年   124篇
  2004年   96篇
  2003年   87篇
  2002年   86篇
  2001年   15篇
  2000年   14篇
  1999年   18篇
  1998年   12篇
  1997年   9篇
  1996年   10篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1991年   11篇
  1990年   7篇
  1989年   6篇
  1988年   13篇
  1987年   7篇
  1986年   7篇
  1985年   14篇
  1984年   9篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1967年   3篇
  1962年   4篇
排序方式: 共有2914条查询结果,搜索用时 31 毫秒
131.
Adenyl cyclase (AC) plays a pivotal role in cell signaling. The AC system of bivalves has received little attention so far, and our study has been addressed to the characterization of AC properties in the gills of T. philippinarum. The enzyme showed a Km value of 0.77 mM for ATP in the presence of 5 mM Mg2+; in the absence of agonists, it was poorly affected by GTP, while it was stimulated by GTPgammaS and GppNHp up to 14-fold and 4-fold, respectively. Similarly to other invertebrates, the enzyme activity was scarcely stimulated by forskolin. The receptor agonist serotonin (5-HT) significantly stimulated the AC activity, and the pharmacological profile of the 5-HT receptor/s was as follows: (+)butaclamol > dihydroergocryptine > methysergide > prazosin > yohimbine. The AC activity was assessed in vitro in the presence of tributyltin chloride and HgCl2, which reduced the AC activity only at the highest dose tested (10-100 microM). Our data indicate the presence of a membrane-bound AC in gill membranes of T. philippinarum, coupled to Gs proteins and to a specific class of 5-HT receptors. Such receptors show a pharmacological profile slightly different from that reported for 5-HT invertebrate receptors cloned so far.  相似文献   
132.
The DNA damage checkpoint is a surveillance mechanism activated by DNA lesions and devoted to the maintenance of genome stability. It is considered as a signal transduction cascade, involving a sensing step, the activation of a set of protein kinases and the transmission and amplification of the damage signal through several phosphorylation events. In budding yeast many players of this pathway have been identified. Recent work showed that G1 and G2 checkpoint activation in response to UV irradiation requires prior recognition and processing of UV lesions by nucleotide excision repair (NER) factors that likely recruit checkpoint proteins near the damage. However, another report suggested that NER was not required for checkpoint function. Since the functional relationship between repair mechanisms and checkpoint activation is a very important issue in the field, we analyzed, under different experimental conditions, whether lesion processing by NER is required for checkpoint activation. We found that DNA damage checkpoint can be triggered in an NER-independent manner only if cells are subjected to liquid holding after UV treatment. This incubation causes a time-dependent breakage of DNA strands in NER-deficient cells and leads to partial activation of the checkpoint kinase. The analysis of the genetic requirements for this alternative activation pathway suggest that it requires Mec1 and the Rad17 complex and that the observed DNA breaks are likely to be due to spontaneous decay of damaged DNA.  相似文献   
133.
134.
Structural relationship between the antioxidant melatonin and the non-benzodiazepine hypnotic zolpidem (ZPD) suggests possible direct antioxidant and neuroprotective properties of this compound. In the present work, these effects were analyzed for zolpidem and four of its synthesis intermediates. In vitro assays include lipid peroxidation and protein oxidation studies in liver and brain homogenates. Intracellular antioxidant effects were analyzed by evaluation of free radical formation prevention in HT-22 hippocampal cells treated with glutamate 10mM and measured by flow cytometer DCF fluorescence. The neuroprotective effect of these compounds was evaluated as neuronal death prevention of HT-22 cells treated with the same concentration of glutamate. Zolpidem was found to prevent induced lipid peroxidation in rat liver and brain homogenates showing figures similar to melatonin, although it failed to prevent protein oxidation. ZPD-I was the most effective out of the several zolpidem intermediates studied as it prevented lipid peroxidation with an efficiency higher than melatonin or zolpidem and with an effectiveness similar to estradiol and trolox. ZPD-I prevents protein oxidation, which trolox is known to be unable to prevent. When cellular experiments were undertaken, ZPD-I prevented totally the increase of intracellular free radicals induced by glutamate 10mM in culture medium for 12h, while zolpidem and ZPD-III partially prevented this increase. Also the three compounds protected hippocampal neurons from glutamate-induced death in the same conditions, being their comparative efficacy, ZPD-III > ZPD-I = ZPD.  相似文献   
135.
mAb HC-10 loses its reactivity with HLA class I (HLA-I) H chain (HC) following its association with beta(2)-microglobulin (beta(2)m). Furthermore, the HC-10 defined epitope appears to be involved in the pathogenesis of spondyloarthropathies, because HC-10 reduced their incidence in HLA-B27(+)beta(2)m degrees /MHC class II knockout mice. This study has characterized the determinant recognized by HC-10. Panning of a phage display peptide library with HC-10 resulted in isolation of the motif PxxWDR, which could be aligned with P57, W60, D61, and R62 of the first domain of the HLA-I HC allospecificities reactive with HC-10. The (55)EGPEYWDR(N/E)T(64) (p-1) is the shortest motif-bearing peptide that reacts with HC-10 and inhibits its binding to soluble HLA-B7 HC, irrespective of whether N (p-1a) or E (p-1b) is present at position 63. By contrast, HC-10 did not react with six additional peptides, each bearing motif amino acid substitutions present in HC-10-not-reactive HLA-I allospecificities. The p-1-derived Qp-1, synthesized with the additional conserved Q54, which displays the highest in vitro reactivity with HC-10, was the only one to induce in mice IgG resembling HC-10 in their fine specificity. Mapping of the HC-10-defined determinant suggests that the lack of mAb reactivity with beta(2)m-associated HLA-I HC is caused by blocking by the peptide in the groove of beta(2)m-associated HLA-I HC, though a role of HC conformational changes following its association with beta(2)m cannot be excluded. This information contributes to our understanding of the molecular basis of the antigenic profiles of beta(2)m-free and beta(2)m-associated HLA-I HC and may serve to develop active specific immunotherapy of spondyloarthropathies.  相似文献   
136.
Oncogenic transformation in human and experimental animals is not necessarily followed by the appearance of a tumor mass. The immune system of the host can recognize tumor antigens by the presentation of small antigenic peptides to the receptor of cytotoxic T-lymphocytes (CTLs) and reject the nascent tumor. However, cancer cells can sometimes escape these specific T-cell immune responses in the course of somatic (genetic and phenotypic) clonal evolution. Among the tumor immune escape mechanisms described to date, the alterations in the expression of major histocompatibility complex (MHC) molecules play a crucial step in tumor development due to the role of MHC antigens in antigen presentation to T-lymphocytes and the regulation of natural killer cell (NK) cell function. In this work, we have (1) updated information on the mechanisms that allow CTLs to recognize tumor antigens after antigen processing by transformed cells, (2) described the altered MHC class I phenotypes that are commonly found in human tumors, (3) summarized the molecular mechanisms responsible for MHC class I alteration in human tumors, (4) provided evidence that these altered human leukocyte antigens (HLA) class I phenotypes are detectable as result of a T-cell immunoselection of HLA class I-deficient variants by an immunecompetent host, and (5) presented data indicating the MHC class I phenotype and the immunogenicity of experimental metastatic tumors change drastically when tumors develop in immunodeficient mice.  相似文献   
137.
Ion channels are key participants in physiological processes of plant cells. Here, we report the first characterization of a high conductance, Cl(-)-permeable channel, present in enriched fractions of plasma membranes of bean root cells. The Cl(-) channel was incorporated into planar lipid bilayers and its activity was recorded under voltage clamp conditions. The channel is voltage-dependent, excludes the passage of cations (K(+), Na(+), and Ca(2+)), and is inhibited by micromolar concentrations of Zn(2+). The Cl(-) conductance here characterized represents a previously undescribed channel of plant cells.  相似文献   
138.
The high resolution three-dimensional structure of the newly discovered plant viscotoxin C1, from the Asiatic Viscum album ssp. Coloratum ohwi, has been determined in solution by (1)H NMR spectroscopy at pH 3.6 and 285 K. The viscotoxin C1-fold, consisting of a helix-turn-helix motif and a short stretch of an antiparralel beta-sheet is very similar to that found for the highly similar viscotoxins A2 and A3 and for other related thionins. Different functional properties of members of the thionin family are discussed here in light of the structural and electrostatic properties. Among the very homologous family of alpha- and beta-thionins, known for their antimicrobial activity, the viscotoxin subfamily differs from the other members because of its high toxicity against tumoral cells. Key residues for the modulation of viscotoxin cytotoxicity have been identified on the basis of sequence and structural alignment.  相似文献   
139.
Sso7d is a small basic protein consisting of 62 amino acids isolated from the thermoacidophilic archeobacterium Sulfolobus solfataricus. The protein is endowed with DNA binding properties, RNase activity, and the capability of rescuing aggregated proteins in the presence of ATP. In this study, the electrostatic properties of Sso7d are investigated by using the Poisson-Boltzmann calculation of the surface potential distribution and following by NMR spectroscopy the proton chemical shift pH titration of acidic residues. Although the details of the catalytic mechanism still have to be defined, the results from NMR experiments confirm the possible involvement of Glu35 as the proton acceptor in the catalytic reaction, as seen by its abnormally high pK(a) value. Poisson-Boltzmann calculations and NMR titration shifts suggest the presence of a possible hydrogen bond between Glu35 and Tyr33, with a consequent rather rigid arrangement at these positions. Comparison with RNase T1 suggests that Tyr7 may be a good candidate for acting as a proton donor in the active site of Sso7d as shown by its low phenolic pK(a) of approximately 9.3. Titration experiments performed with the UpA, a RNA dinucleotide model, showed that the protein residues affected by the interaction are mainly located in a different region with respect to the surface affected by DNA recognition, in good agreement with the surface potential distribution found with electrostatic calculations.  相似文献   
140.
Polyamine oxidases are key enzymes responsible of the polyamine interconversion metabolism in animal cells. Recently, a novel enzyme belonging to this class of enzymes has been characterized for its capability to oxidize preferentially spermine and designated as spermine oxidase. This is a flavin adenine dinucleotide-containing enzyme, and it has been expressed both in vitro and in vivo systems. The primary structure of mouse spermine oxidase (mSMO) was deduced from a cDNA clone (Image Clone 264769) recovered by a data base search utilizing the human counterpart of polyamine oxidases, PAOh1. The open reading frame predicts a 555-amino acid protein with a calculated M(r) of 61,852.30, which shows a 95.1% identity with PAOh1. To understand the biochemical properties of mSMO and its structure/function relationship, the mSMO cDNA has been subcloned and expressed in secreted and secreted-tagged forms into Escherichia coli BL21 DE3 cells. The recombinant enzyme shows an optimal pH value of 8.0 and is able to oxidize rapidly spermine to spermidine and 3-aminopropanal and fails to act upon spermidine and N(1)-acetylpolyamines. The purified recombinant-tagged form enzyme (M(r) approximately 68,000) has K(m) and k(cat) values of 90 microm and 4.5 s(-1), respectively, using spermine as substrate at pH 8.0. Molecular modeling of mSMO protein based on maize polyamine oxidase three-dimensional structure suggests that the general features of maize polyamine oxidase active site are conserved in mSMO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号