首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2787篇
  免费   222篇
  国内免费   1篇
  2024年   4篇
  2023年   19篇
  2022年   43篇
  2021年   102篇
  2020年   47篇
  2019年   73篇
  2018年   72篇
  2017年   69篇
  2016年   113篇
  2015年   182篇
  2014年   186篇
  2013年   211篇
  2012年   267篇
  2011年   206篇
  2010年   150篇
  2009年   125篇
  2008年   148篇
  2007年   148篇
  2006年   144篇
  2005年   129篇
  2004年   97篇
  2003年   91篇
  2002年   90篇
  2001年   16篇
  2000年   15篇
  1999年   22篇
  1998年   14篇
  1997年   10篇
  1996年   12篇
  1995年   16篇
  1994年   11篇
  1993年   10篇
  1991年   14篇
  1990年   10篇
  1989年   6篇
  1988年   13篇
  1987年   7篇
  1986年   11篇
  1985年   16篇
  1984年   10篇
  1983年   8篇
  1982年   11篇
  1981年   4篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1967年   3篇
  1962年   5篇
排序方式: 共有3010条查询结果,搜索用时 16 毫秒
61.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   
62.
Egeria densa (Hydrocharitaceae) is a submerged macrophyte from South America that is a weed in several countries. It crowds out native plants and hinders water use, causing economic and environmental damage. The leafminer fly Hydrellia sp. 1 (Diptera: Ephydridae), was found feeding in E. densa throughout its Argentine distribution, and is currently the only known specialist herbivore of E. densa. It was reared in the laboratory and tested on 25 plant species. This herbivore can cause heavy defoliation in the laboratory and in the field. Hydrellia sp. 1 was found only on E. densa, but in the laboratory it also developed on two other Hydrocharitaceae species in the same family; Egeria naias, and Elodea callitrichoides. Significant oviposition and feeding were only observed on its primary natural host, and to a lesser degree on E. naias. Field studies indicate Hydrellia sp. 1 is present in the field year round, unless the host plant is prostrate for long periods, or covered by floating macrophytes. These results indicate Hydrellia sp. 1 may be a suitable biocontrol candidate for E. densa.  相似文献   
63.
Background aimsFirst-trimester chorionic villi (CV) are an attractive source of human mesenchymal stromal cells (hMSC) for possible applications in cellular therapy and regenerative medicine. Human MSC from CV were monitored for genetic stability in long-term cultures.MethodsWe set up a good manufacturing practice cryopreservation procedure for small amounts of native CV samples. After isolation, hMSC were in vitro cultured and analyzed for biological end points. Genome stability at different passages of expansion was explored by karyotype, genome-wide array-comparative genomic hybridization and microsatellite genotyping.ResultsGrowth curve analysis revealed a high proliferative potential of CV-derived cells. Immunophenotyping showed expression of typical MSC markers and absence of hematopoietic markers. Analysis of multilineage potential demonstrated efficient differentiation into adipocytes, osteocytes, chondrocytes and induction of neuro-glial commitment. In angiogenic experiments, differentiation in endothelial cells was detected by in vitro Matrigel assay after vascular endothelial growth factor stimulation. Data obtained from karyotyping, array-comparative genomic hybridization and microsatellite genotyping comparing early with late DNA passages did not show any genomic variation at least up to passage 10. Aneuploid clones appeared in four of 14 cases at latest passages, immediately before culture growth arrest.ConclusionsOur findings indicate that hCV-MSC are genetically stable in long-term cultures at least up to passage 10 and that it is possible to achieve clinically relevant amounts of hCV-MSC even after few stages of expansion. Genome abnormalities at higher passages can occasionally occur and are always associated with spontaneous growth arrest. Under these circumstances, hCV-MSC could be suitable for therapeutic purposes.  相似文献   
64.

Background

A recent meta-analysis suggested an association between exposure to paternal smoking during pregnancy and childhood brain tumor risk, but no studies have evaluated whether this association differs by polymorphisms in genes that metabolize tobacco-smoke chemicals.

Methods

We assessed 9 functional polymorphisms in 6 genes that affect the metabolism of polycyclic aromatic hydrocarbons (PAH) to evaluate potential interactions with parental smoking during pregnancy in a population-based case-control study of childhood brain tumors. Cases (N = 202) were ≤10 years old, diagnosed from 1984–1991 and identified in three Surveillance, Epidemiology, and End Results (SEER) registries in the western U.S. Controls in the same regions (N = 286) were frequency matched by age, sex, and study center. DNA for genotyping was obtained from archived newborn dried blood spots.

Results

We found positive interaction odds ratios (ORs) for both maternal and paternal smoking during pregnancy, EPHX1 H139R, and childhood brain tumors (P interaction = 0.02; 0.10), such that children with the high-risk (greater PAH activation) genotype were at a higher risk of brain tumors relative to children with the low-risk genotype when exposed to tobacco smoke during pregnancy. A dose-response pattern for paternal smoking was observed among children with the EPHX1 H139R high-risk genotype only (ORno exposure = 1.0; OR≤3 hours/day = 1.32, 95% CI: 0.52–3.34; OR>3hours/day = 3.18, 95% CI: 0.92–11.0; P trend = 0.07).

Conclusion

Parental smoking during pregnancy may be a risk factor for childhood brain tumors among genetically susceptible children who more rapidly activate PAH in tobacco smoke.  相似文献   
65.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M.  相似文献   
66.
Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease.  相似文献   
67.
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (−13±17% and −10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (−24±13% and −26±19%, P<0.01) with alteration of the central activation ratio (−24±24% and −28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: −18±18% and PF: −20±15%, P<0.01) and peak twitch (KE: −33±12%, P<0.001 and PF: −19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·1), lactate dehydrogenase (1145±511 UI·L−1), C-Reactive Protein (13.1±7.5 mg·L−1) and myoglobin (449.3±338.2 µg·L−1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.  相似文献   
68.
Familial amyotrophic lateral sclerosis caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. It has been shown that a reduced intra-subunit disulfide bridge apo-SOD1 can rapidly initiate fibrillation forming an inter-subunits disulfide under mild, physiologically accessible conditions. Once initiated, elongation can proceed via recruitment of either apo or partially metallated disulfide-intact SOD1 and the presence of copper, but not zinc, ions inhibit fibrillation. We propose a structural model, refined through molecular dynamics simulations, that, taking into account these experimental findings, provides a molecular explanation for the initiation and the elongation of SOD1 fibrils in physiological conditions. The model indicates the occurrence of a new dimeric unit, prone to interact one with the other due to the presence of a wide hydrophobic surface and specific electrostatic interactions. The model has dimensions consistent with the SOD1 fibril size observed through electron microscopy and provides a structural basis for the understanding of SOD1 fibrillation.
Figure
ALS-linked superoxide dismutase fibrils  相似文献   
69.
70.
KRAS mutations are major factors involved in initiation and maintenance of pancreatic tumors. The impact of different mutations on patient survival has not been clearly defined. We screened tumors from 171 pancreatic cancer patients for mutations in KRAS and CDKN2A genes. Mutations in KRAS were detected in 134 tumors, with 131 in codon 12 and only 3 in codon 61. The GGT>GAT (G12D) was the most frequent mutation and was present in 60% (80/134). Deletions and mutations in CDKN2A were detected in 43 tumors. Analysis showed that KRAS mutations were associated with reduced patient survival in both malignant exocrine and ductal adenocarcinomas (PDAC). Patients with PDACs that had KRAS mutations showed a median survival of 17 months compared to 30 months for those without mutations (log-rank P = 0.07) with a multivariate hazard ratio (HR) of 2.19 (95%CI 1.09–4.42). The patients with G12D mutation showed a median survival of 16 months (log-rank-test P = 0.03) and an associated multivariate HR 2.42 (95%CI 1.14–2.67). Although, the association of survival in PDAC patients with CDKN2A aberrations in tumors was not statistically significant, the sub-group of patients with concomitant KRAS mutations and CDKN2A alterations in tumors were associated with a median survival of 13.5 months compared to 22 months without mutation (log-rank-test P = 0.02) and a corresponding HR of 3.07 (95%CI 1.33–7.10). Our results are indicative of an association between mutational status and survival in PDAC patients, which if confirmed in subsequent studies can have potential clinical application.  相似文献   
[首页] « 上一页 [2] [3] [4] [5] [6] 7 [8] [9] [10] [11] [12] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号