首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2958篇
  免费   242篇
  国内免费   1篇
  2024年   4篇
  2023年   19篇
  2022年   45篇
  2021年   108篇
  2020年   51篇
  2019年   79篇
  2018年   81篇
  2017年   76篇
  2016年   121篇
  2015年   186篇
  2014年   192篇
  2013年   234篇
  2012年   277篇
  2011年   205篇
  2010年   154篇
  2009年   132篇
  2008年   156篇
  2007年   161篇
  2006年   151篇
  2005年   130篇
  2004年   106篇
  2003年   92篇
  2002年   100篇
  2001年   25篇
  2000年   22篇
  1999年   24篇
  1998年   14篇
  1997年   15篇
  1996年   13篇
  1995年   17篇
  1994年   11篇
  1993年   10篇
  1991年   11篇
  1990年   10篇
  1989年   8篇
  1988年   13篇
  1987年   11篇
  1986年   7篇
  1985年   21篇
  1984年   14篇
  1983年   14篇
  1982年   10篇
  1981年   10篇
  1980年   12篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1969年   4篇
  1962年   4篇
排序方式: 共有3201条查询结果,搜索用时 296 毫秒
151.
Role of p53 in HER2-induced proliferation or apoptosis   总被引:4,自引:0,他引:4  
HER2 oncogene overexpression has been associated either with proliferation or differentiation and apoptosis. The role of p53 on these different chances was investigated. Wild type (wt) p53-IGROV1 cells showed growth inhibition and apoptosis after HER2 transfection, whereas no anti-proliferative effect was observed in its mutated p53 sub-line unless wt p53 was cotransfected with HER2. Stable HER2 transfectants derived from wt p53 line treated with heregulin-beta1 or epidermal growth factor showed a decrease in proliferation due to a G(2)/M cell cycle block despite normal mitogen-activated protein kinase activation. In these HER2 transfectants, c-Myc and p53 expression were increased, whereas MDM2 was dramatically down-modulated. By contrast, growth factors stimulation of HER2 transfectants with mutated-p53 induced progression through the cell cycle. Together, our data point to a regulatory role for p53 in HER2 signaling.  相似文献   
152.
To examine the biochemical regulation of morphine sulfate (MS) on prostanoid synthesis, conscious newborn piglets received a bolus dose of 100 microg/kg followed by a continuous infusion dose of 100 microg/kg/h. The control group received equivalent volume bolus and continuous infusion of 5% dextrose. Blood samples were drawn from the femoral artery and sagittal sinus vein before, during and after infusion for measurement of prostanoids. The expression of mRNAs encoding cyclooxygenases (COX)-1 and -2 in the brainstem, thalamus, cortex, and cerebellum of the newborn piglets were also examined. Systemic PGE2 levels declined substantially during and post MS infusion (p < 0.01), whereas sagittal sinus vein PGE2 levels increased following the bolus dose (p < 0.01) and at 4 h of continuous infusion (p < 0.01). MS infusion did not affect systemic 6-ketoPGF1alpha levels, however, in the cerebral circulation 6-ketoPGF1alpha levels increased 146% (p < 0.01) following the bolus dose and remained elevated throughout the infusion and post infusion times. Systemic TxB2 levels increased transiently at 4 h (p < 0.01) and sagittal sinus vein TxB2 increased at 0.5 and 1 h (p < 0.01) during continuous infusion. RT-PCR assays revealed a 1.5- (p < 0.001) to 4-fold (p < 0.001) increased expression of COX-1 mRNA in the MS-infused brain samples. In contrast, no differences in COX-2 mRNA were detected between the groups. These data imply that MS may have significant effects on prostanoid synthesis in the newborn. The data further show that the MS-induced prostanoid responses appear to be mediated via COX-1.  相似文献   
153.
Cerebellar hypoplasia, mild mental retardation, skeletal abnormalities, and ataxia were present in a 40 years old patient with a complex chromosome rearrangement (CCR). Chromosomes 2, 5, 16, and 17 were involved in the CCR. For the definition of the eight breakpoints leading to the rearrangement FISH with whole chromosomes paintings and specific telomeric probes was employed. Gene disruption, positional effect variegation, and sub-microscopic deletions are all possible causes for the abnormal phenotype observed in the patient.  相似文献   
154.
Glutathione (GSH) is important in free radical scavenging, maintaining cellular redox status, and regulating cell survival in response to a wide variety of toxicants. The rate-limiting enzyme in GSH synthesis is glutamate-cysteine ligase (GCL), which is composed of catalytic (GCLC) and modifier (GCLM) subunits. To determine whether increased GSH biosynthetic capacity enhances cellular resistance to tumor necrosis factor-alpha- (TNF-alpha-) induced apoptotic cell death, we have established several mouse liver hepatoma (Hepa-1) cell lines overexpressing GCLC and/or GCLM. Cells overexpressing GCLC alone exhibit modest increases in GCL activity, while cells overexpressing both subunits have large increases in GCL activity. Importantly, cells overexpressing both GCL subunits exhibit increased resistance to TNF-induced apoptosis as judged by a loss of redox potential; mitochondrial membrane potential; translocation of cytochrome c to the cytoplasm; and activation of caspase-3, caspase-8, and caspase-9. Analysis of the effects of TNF on these parameters indicates that maintaining mitochondrial integrity mediates this protective effect in GCL-overexpressing cells.  相似文献   
155.
The current taxonomic status of the species and subspecies belonging to the genus Alouatta is addressed by combined phylogenetic analysis using morphological, kariotipyc and molecular data (mitochondrial genes cytocrome oxidase II and cytochrome B). Our result demonstrated that Alouatta palliata is the most basal taxon for the genus in concordance with previous studies, as well as showing the validity of the taxon Alouatta sara as a species. Also our analysis shows that the sex chromosome has evolved from a XY/XX system to a X1X2Y1Y2/X1X1X2X2 system within the genus, as well as an increase in the size and complexity of the hioideal bone.  相似文献   
156.
Adenyl cyclase (AC) plays a pivotal role in cell signaling. The AC system of bivalves has received little attention so far, and our study has been addressed to the characterization of AC properties in the gills of T. philippinarum. The enzyme showed a Km value of 0.77 mM for ATP in the presence of 5 mM Mg2+; in the absence of agonists, it was poorly affected by GTP, while it was stimulated by GTPgammaS and GppNHp up to 14-fold and 4-fold, respectively. Similarly to other invertebrates, the enzyme activity was scarcely stimulated by forskolin. The receptor agonist serotonin (5-HT) significantly stimulated the AC activity, and the pharmacological profile of the 5-HT receptor/s was as follows: (+)butaclamol > dihydroergocryptine > methysergide > prazosin > yohimbine. The AC activity was assessed in vitro in the presence of tributyltin chloride and HgCl2, which reduced the AC activity only at the highest dose tested (10-100 microM). Our data indicate the presence of a membrane-bound AC in gill membranes of T. philippinarum, coupled to Gs proteins and to a specific class of 5-HT receptors. Such receptors show a pharmacological profile slightly different from that reported for 5-HT invertebrate receptors cloned so far.  相似文献   
157.
The DNA damage checkpoint is a surveillance mechanism activated by DNA lesions and devoted to the maintenance of genome stability. It is considered as a signal transduction cascade, involving a sensing step, the activation of a set of protein kinases and the transmission and amplification of the damage signal through several phosphorylation events. In budding yeast many players of this pathway have been identified. Recent work showed that G1 and G2 checkpoint activation in response to UV irradiation requires prior recognition and processing of UV lesions by nucleotide excision repair (NER) factors that likely recruit checkpoint proteins near the damage. However, another report suggested that NER was not required for checkpoint function. Since the functional relationship between repair mechanisms and checkpoint activation is a very important issue in the field, we analyzed, under different experimental conditions, whether lesion processing by NER is required for checkpoint activation. We found that DNA damage checkpoint can be triggered in an NER-independent manner only if cells are subjected to liquid holding after UV treatment. This incubation causes a time-dependent breakage of DNA strands in NER-deficient cells and leads to partial activation of the checkpoint kinase. The analysis of the genetic requirements for this alternative activation pathway suggest that it requires Mec1 and the Rad17 complex and that the observed DNA breaks are likely to be due to spontaneous decay of damaged DNA.  相似文献   
158.
159.
Structural relationship between the antioxidant melatonin and the non-benzodiazepine hypnotic zolpidem (ZPD) suggests possible direct antioxidant and neuroprotective properties of this compound. In the present work, these effects were analyzed for zolpidem and four of its synthesis intermediates. In vitro assays include lipid peroxidation and protein oxidation studies in liver and brain homogenates. Intracellular antioxidant effects were analyzed by evaluation of free radical formation prevention in HT-22 hippocampal cells treated with glutamate 10mM and measured by flow cytometer DCF fluorescence. The neuroprotective effect of these compounds was evaluated as neuronal death prevention of HT-22 cells treated with the same concentration of glutamate. Zolpidem was found to prevent induced lipid peroxidation in rat liver and brain homogenates showing figures similar to melatonin, although it failed to prevent protein oxidation. ZPD-I was the most effective out of the several zolpidem intermediates studied as it prevented lipid peroxidation with an efficiency higher than melatonin or zolpidem and with an effectiveness similar to estradiol and trolox. ZPD-I prevents protein oxidation, which trolox is known to be unable to prevent. When cellular experiments were undertaken, ZPD-I prevented totally the increase of intracellular free radicals induced by glutamate 10mM in culture medium for 12h, while zolpidem and ZPD-III partially prevented this increase. Also the three compounds protected hippocampal neurons from glutamate-induced death in the same conditions, being their comparative efficacy, ZPD-III > ZPD-I = ZPD.  相似文献   
160.
mAb HC-10 loses its reactivity with HLA class I (HLA-I) H chain (HC) following its association with beta(2)-microglobulin (beta(2)m). Furthermore, the HC-10 defined epitope appears to be involved in the pathogenesis of spondyloarthropathies, because HC-10 reduced their incidence in HLA-B27(+)beta(2)m degrees /MHC class II knockout mice. This study has characterized the determinant recognized by HC-10. Panning of a phage display peptide library with HC-10 resulted in isolation of the motif PxxWDR, which could be aligned with P57, W60, D61, and R62 of the first domain of the HLA-I HC allospecificities reactive with HC-10. The (55)EGPEYWDR(N/E)T(64) (p-1) is the shortest motif-bearing peptide that reacts with HC-10 and inhibits its binding to soluble HLA-B7 HC, irrespective of whether N (p-1a) or E (p-1b) is present at position 63. By contrast, HC-10 did not react with six additional peptides, each bearing motif amino acid substitutions present in HC-10-not-reactive HLA-I allospecificities. The p-1-derived Qp-1, synthesized with the additional conserved Q54, which displays the highest in vitro reactivity with HC-10, was the only one to induce in mice IgG resembling HC-10 in their fine specificity. Mapping of the HC-10-defined determinant suggests that the lack of mAb reactivity with beta(2)m-associated HLA-I HC is caused by blocking by the peptide in the groove of beta(2)m-associated HLA-I HC, though a role of HC conformational changes following its association with beta(2)m cannot be excluded. This information contributes to our understanding of the molecular basis of the antigenic profiles of beta(2)m-free and beta(2)m-associated HLA-I HC and may serve to develop active specific immunotherapy of spondyloarthropathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号