首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2722篇
  免费   219篇
  国内免费   1篇
  2024年   6篇
  2023年   23篇
  2022年   48篇
  2021年   102篇
  2020年   47篇
  2019年   73篇
  2018年   72篇
  2017年   69篇
  2016年   110篇
  2015年   179篇
  2014年   182篇
  2013年   209篇
  2012年   259篇
  2011年   200篇
  2010年   145篇
  2009年   121篇
  2008年   146篇
  2007年   144篇
  2006年   140篇
  2005年   124篇
  2004年   96篇
  2003年   89篇
  2002年   87篇
  2001年   15篇
  2000年   14篇
  1999年   18篇
  1998年   12篇
  1997年   9篇
  1996年   10篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1991年   11篇
  1990年   8篇
  1989年   6篇
  1988年   14篇
  1987年   7篇
  1986年   7篇
  1985年   14篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1980年   10篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
  1962年   4篇
排序方式: 共有2942条查询结果,搜索用时 18 毫秒
771.
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.  相似文献   
772.
Low-level laser energy has been increasingly used in the treatment of a broad range of conditions and has improved wound healing, reduced edema, and relieved pain of various etiologies. This study examined whether 635-nm low-level lasers had an effect on adipose tissue in vivo and the procedural implementation of lipoplasty/liposuction techniques. The experiment investigated the effect of 635-nm, 10-mW diode laser radiation with exclusive energy dispersing optics. Total energy values of 1.2 J/cm(2), 2.4 J/cm(2), and 3.6 J/cm(2) were applied on human adipose tissue taken from lipectomy samples of 12 healthy women. The tissue samples were irradiated for 0, 2, 4, and 6 minutes with and without tumescent solution and were studied using the protocols of transmission electron microscopy and scanning electron microscopy. Nonirradiated tissue samples were taken for reference. More than 180 images were recorded and professionally evaluated. All microscopic results showed that without laser exposure the normal adipose tissue appeared as a grape-shaped node. After 4 minutes of laser exposure, 80 percent of the fat was released from the adipose cells; at 6 minutes of laser exposure, 99 percent of the fat was released from the adipocyte. The released fat was collected in the interstitial space. Transmission electron microscopic images of the adipose tissue taken at x60,000 showed a transitory pore and complete deflation of the adipocytes. The low-level laser energy affected the adipose cell by causing a transitory pore in the cell membrane to open, which permitted the fat content to go from inside to outside the cell. The cells in the interstitial space and the capillaries remained intact. Low-level laser-assisted lipoplasty has a significant impact on the procedural implementation of lipoplasty techniques.  相似文献   
773.
We investigated the effects of calcium on the oxidative metabolism and steroidogenic activity of human term placental mitochondria. Submicromolar Ca(2+) concentrations stimulated state 3 oxygen consumption with 2-oxoglutarate and isocitrate and activated the 2-oxoglutarate and the NAD-isocitrate dehydrogenases by diminishing their Michaelis-Menten constants. Ca(2+) inhibited NADP-isocitrate dehydrogenase (NADP-ICDH) and the synthesis of progesterone. The NADP-ICDH maximal velocity was threefold higher than that of NAD-ICDH and had a threefold lower K(m) for isocitrate than NAD-ICDH. Isocitrate but not malate or 2-oxoglutarate supported progesterone synthesis. Calcium inhibition of progesterone synthesis was observed with isocitrate but not with malate or 2-oxoglutarate. Tight regulation of NADP-isocitrate dehydrogenase by calcium ions suggests that this enzyme plays an important role in placental mitochondrial metabolism.  相似文献   
774.
FprA is a mycobacterial oxidoreductase that catalyzes the transfer of reducing equivalents from NADPH to a protein acceptor. We determined the atomic resolution structure of FprA in the oxidized (1.05 A resolution) and NADPH-reduced (1.25 A resolution) forms. The comparison of these FprA structures with that of bovine adrenodoxin reductase showed no significant overall differences. Hence, these enzymes, which belong to the structural family of the disulfide oxidoreductases, are structurally conserved in very distant organisms such as mycobacteria and mammals. Despite the conservation of the overall fold, the details of the active site of FprA show some peculiar features. In the oxidized enzyme complex, the bound NADP+ exhibits a covalent modification, which has been identified as an oxygen atom linked through a carbonylic bond to the reactive C4 atom of the nicotinamide ring. Mass spectrometry has confirmed this assignment. This NADP+ derivative is likely to form by oxidation of the NADP+ adduct resulting from nucleophilic attack by an active-site water molecule. A Glu-His pair is well positioned to activate the attacking water through a mechanism analogous to that of the catalytic triad in serine proteases. The NADP+ nicotinamide ring exhibits the unusual cis conformation, which may favor derivative formation. The physiological significance of this reaction is presently unknown. However, it could assist with drug-design studies in that the modified NADP+ could serve as a lead compound for the development of specific inhibitors.  相似文献   
775.
Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV–vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.  相似文献   
776.

Aim

The soil seed bank is a key component of the biodiversity of plant communities, but various aspects of its functioning in temperate forest ecosystems are still unknown. We here adopted a trait-based approach to investigate the effects of macro- and microclimatic gradients on the juvenile plant communities from the realized seed bank of two types of European temperate forest.

Location

Oak-dominated forests in Italy and Belgium.

Methods

We analysed the variation of key functional traits (plant height, leaf area, leaf dry weight, specific leaf area and leaf number) of juvenile plants from the realised soil seed bank in relation to elevation (from 0 to 800 m a.s.l.), forest type (thinned and unthinned forest) and distance to the forest edge. We translocated soil samples from the forest core to the edge (and vice versa) and from high- to low-elevation forests to test the effects of edge and warming respectively.

Results

Taller communities developed at the forest edge due to higher light availability and warmer temperatures. The translocation from the core to the edge did not significantly modify mean trait values. Instead, the shadier and cooler microclimate of the forest core reduced the mean leaf area, mean dry weight, height and leaf number in the communities realised from the edge soil. The translocation from high- to lowland forests led to increased values for all traits (except specific leaf area). Edge vs core trait variation was more driven by intraspecific variability, whereas the translocation from high- to low-elevation forests caused trait changes mostly due to species turnover.

Conclusions

Global warming might result in a functional shift of the understorey due to both an early filtering effect on the seedlings from soil seed banks and their adaptive trait adjustments to temperature increase. Furthermore, our study underpins the importance of edge vs core microclimate in driving the functional composition of the realised soil seed bank.  相似文献   
777.
778.
Our planet teeters on the brink of massive ecosystem collapses, and arid regions experience manifold environmental and climatic challenges that increase the magnitude of selective pressures on already stressed ecosystems. Ultimately, this leads to their aridification and desertification, that is, to simplified and barren ecosystems (with proportionally less microbial load and diversity) with altered functions and food webs and modification of microbial community network. Thus, preserving and restoring soil health in such a fragile biome could help buffer climate change's effects. We argue that microorganisms and the protection of their functional properties and networks are key to fight desertification. Specifically, we claim that it is rational, possible and certainly practical to rely on native dryland edaphic microorganisms and microbial communities as well as dryland plants and their associated microbiota to conserve and restore soil health and mitigate soil depletion in newly aridified lands. Furthermore, this will meet the objective of protecting/stabilizing (and even enhancing) soil biodiversity globally. Without urgent conservation and restoration actions that take into account microbial diversity, we will ultimately, and simply, not have anything to protect anymore.  相似文献   
779.
780.
Summary The in vivo effects of L-phenylalanine on the gluconeogenic pathway in the liver of fasted rats with experimentally induced phenylketonurialike characteristics have been investigated. Significant increases of the fructose 6-phosphate, glucose 6-phosphate and glucose concentrations were observed. The study of the effect of L-phenylalanine on the cytoplasmic and mitochondrial redox state and energy charge showed an increase in the mitochondrial NAD+/NADH ratio while the energy charge was virtually unchanged.The effects of phenylalanine and its metabolic derivatives (phenylacetate, phenylethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of lactate de-hydrogenase (EC 1.1.1.27), malate dehydrogenase (EC 1.1.1.37) and 3-hydroxybutyrate de-hydrogenase (EC 1.1.1.30) in rat liver have been also investigated. Phenylpyruvate inhibited the lactate dehydrogenase activity with a Ki of 5.3mm. Phenylpyruvate also inhibited both the mitochondrial (Ki = 4mm) and cytoplasmic (Ki = 5mm) malate dehydrogenase activities. Phenyl-pyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the 3-hydroxybutyrate dehydrogenase activity with Ki values of 0.7, 6.0 and 9.5mm respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号