首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1825篇
  免费   117篇
  2024年   2篇
  2023年   12篇
  2022年   24篇
  2021年   72篇
  2020年   34篇
  2019年   44篇
  2018年   58篇
  2017年   40篇
  2016年   63篇
  2015年   110篇
  2014年   102篇
  2013年   150篇
  2012年   186篇
  2011年   203篇
  2010年   104篇
  2009年   98篇
  2008年   118篇
  2007年   93篇
  2006年   89篇
  2005年   80篇
  2004年   82篇
  2003年   60篇
  2002年   49篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   13篇
  1997年   5篇
  1996年   8篇
  1995年   7篇
  1994年   1篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有1942条查询结果,搜索用时 15 毫秒
131.
132.
The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart.  相似文献   
133.
134.
Adipose tissue‐derived mesenchymal stem cells (Ad‐MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet‐rich plasma (PRP) on Ad‐MSC and adipocyte function. PRP increased Ad‐MSC viability, proliferation rate and G1‐S cell cycle progression, by at least 7‐, 2‐, and 2.2‐fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad‐MSC growth. PRP also accelerated cell migration by at least 1.5‐fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR‐γ and AP‐2 mRNAs, while it increased leptin production by 3.5‐fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)‐6, IL‐8, IL‐10, Interferon‐γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad‐MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro‐angiogenic factors, which may facilitate tissue regeneration processes. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. J. Cell. Biochem. 116: 2408–2418, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   
135.
Mono‐ and bis‐alkaloid chiral auxiliaries with anthraquinone or phenanthryl cores were probed as chiral solvating agents (CSAs) for the enantiodiscrimination of chiral cyclic hemiesters. The dimeric anthraquinone derivative and the monomeric phenanthryl one showed remarkable efficiency in the nuclear magnetic resonance (NMR) differentiation of enantiomeric mixtures of hemiesters. An anthraquinone analogous with a single alkaloid unit was remarkably less effective. The conformational prevalence of the chiral auxiliaries were ascertained by NMR. Chirality 27:693–699, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
136.
Pectins are critical polysaccharides of the cell wall that are involved in key aspects of a plant's life, including cell‐wall stiffness, cell‐to‐cell adhesion, and mechanical strength. Pectins undergo methylesterification, which affects their cellular roles. Pectin methyltransferases are believed to methylesterify pectins in the Golgi, but little is known about their identity. To date, there is only circumstantial evidence to support a role for QUASIMODO2 (QUA2)‐like proteins and an unrelated plant‐specific protein, cotton Golgi‐related 3 (CGR3), in pectin methylesterification. To add to the knowledge of pectin biosynthesis, here we characterized a close homolog of CGR3, named CGR2, and evaluated the effect of loss‐of‐function mutants and over‐expression lines of CGR2 and CGR3 in planta. Our results show that, similar to CGR3, CGR2 is a Golgi protein whose enzyme active site is located in the Golgi lumen where pectin methylesterification occurs. Through phenotypical analyses, we also established that simultaneous loss of CGR2 and CGR3 causes severe defects in plant growth and development, supporting critical but overlapping functional roles of these proteins. Qualitative and quantitative cell‐wall analytical assays of the double knockout mutant demonstrated reduced levels of pectin methylesterification, coupled with decreased microsomal pectin methyltransferase activity. Conversely, CGR2 and CGR3 over‐expression lines have markedly opposite phenotypes to the double knockout mutant, with increased cell‐wall methylesterification levels and microsomal pectin methyltransferase activity. Based on these findings, we propose that CGR2 and CGR3 are critical proteins in plant growth and development that act redundantly in pectin methylesterification in the Golgi apparatus.  相似文献   
137.
Smac-DIABLO in its mature form (20.8 kDa) binds to baculoviral IAP repeat (BIR) domains of inhibitor of apoptosis proteins (IAPs) releasing their inhibitory effects on caspases, thus promoting cell death. Despite its apparent molecular mass (∼100 kDa), Smac-DIABLO was held to be a dimer in solution, simultaneously targeting two distinct BIR domains. We report an extensive biophysical characterization of the protein alone and in complex with the X-linked IAP (XIAP)-BIR2-BIR3 domains. Our data show that Smac-DIABLO adopts a tetrameric assembly in solution and that the tetramer is able to bind two BIR2-BIR3 pairs of domains. Our small-angle x-ray scattering-based tetrameric model of Smac-DIABLO/BIR2-BIR3 highlights some conformational freedom of the complex that may be related to optimization of IAPs binding.  相似文献   
138.
Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR’s divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms.  相似文献   
139.
Gametogenesis is the earliest event after uptake of malaria parasites by the mosquito vector, with a decisive impact on colonization of the mosquito midgut. This process is triggered by a drop in temperature and contact with mosquito molecules. In a few minutes, male and female gametocytes escape from the host erythrocyte by rupturing the parasitophorous vacuole and the erythrocyte membranes. Electron‐dense, oval‐shaped organelles, the osmiophilic bodies (OB), have been implicated in the egress of female gametocytes. By comparative electron microscopy and electron tomography analyses combined with immunolocalization experiments, we here define the morphological features distinctive of male secretory organelles, hereafter named MOB (male osmiophilic bodies). These organelles appear as club‐shaped, electron‐dense vesicles, smaller than female OB. We found that a drop in temperature triggers MOB clustering, independently of exposure to other stimuli. MDV1/PEG3, a protein associated with OB in Plasmodium berghei females, localizes to both non‐clustered and clustered MOB, suggesting that clustering precedes vesicle discharge. A P. berghei mutant lacking the OB‐resident female‐specific protein Pbg377 displays a dramatic reduction in size of the OB, accompanied by a delay in female gamete egress efficiency, while female gamete fertility is not affected. Immunolocalization experiments indicated that MDV1/PEG3 is still recruited to OB‐remnant structures.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号