首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1961篇
  免费   125篇
  2086篇
  2024年   2篇
  2023年   13篇
  2022年   28篇
  2021年   75篇
  2020年   34篇
  2019年   44篇
  2018年   63篇
  2017年   46篇
  2016年   66篇
  2015年   110篇
  2014年   109篇
  2013年   152篇
  2012年   196篇
  2011年   208篇
  2010年   111篇
  2009年   102篇
  2008年   125篇
  2007年   100篇
  2006年   100篇
  2005年   80篇
  2004年   85篇
  2003年   64篇
  2002年   51篇
  2001年   11篇
  2000年   11篇
  1999年   7篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1983年   3篇
  1981年   6篇
  1979年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   5篇
排序方式: 共有2086条查询结果,搜索用时 15 毫秒
11.
The INK4a gene, one of the most often disrupted loci in human cancer, encodes two unrelated proteins, p16(INK4a) and p14(ARF) (ARF) both capable of inducing cell cycle arrest. Although it has been clearly demonstrated that ARF inhibits cell cycle via p53 stabilization, very little is known about the involvement of ARF in other cell cycle regulatory pathways, as well as on the mechanisms responsible for activating ARF following oncoproliferative stimuli. In search of factors that might associate with ARF to control its activity or its specificity, we performed a yeast two-hybrid screen. We report here that the human homologue of spinophilin/neurabin II, a regulatory subunit of protein phosphatase 1 catalytic subunit specifically interacts with ARF, both in yeast and in mammalian cells. We also show that ectopic expression of spinophilin/neurabin II inhibits the formation of G418-resistant colonies when transfected into human and mouse cell lines, regardless of p53 and ARF status. Moreover, spinophilin/ARF coexpression in Saos-2 cells, where ARF ectopic expression is ineffective, somehow results in a synergic effect. These data demonstrate a role for spinophilin in cell growth and suggest that ARF and spinophilin could act in partially overlapping pathways.  相似文献   
12.
13.
Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22–28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.  相似文献   
14.
15.
16.
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.  相似文献   
17.
18.
From the aerial parts of Salsola oppositofolia, S. soda and S. tragus an alkaloid extract was obtained and tested to evaluate antioxidant and anti-cholinesterase activities. The in vitro study of the antioxidant activity by the DPPH method revealed a significant activity of Salsola alkaloid extracts with IC50 values ranging from 16.30 μg/mL for S. oppositifolia to 26.17 μg/mL for S. tragus. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. S. tragus alkaloid extract exerted the highest inhibitory activity against AChE (IC50 of 30.2 μg/mL) and BChE (IC50 of 26.5 μg/mL). Interestingly, S. soda and S. oppositifolia exhibited a selective inhibitory activity against BChE with IC50 values of 34.3 μg/mL and 32.7 μg/mL, respectively. Tetrahydroisoquinoline alkaloids were identified and quantified by GC/MS analysis.  相似文献   
19.
20.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号