首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   145篇
  2197篇
  2023年   13篇
  2022年   30篇
  2021年   73篇
  2020年   39篇
  2019年   45篇
  2018年   61篇
  2017年   42篇
  2016年   65篇
  2015年   116篇
  2014年   107篇
  2013年   162篇
  2012年   199篇
  2011年   217篇
  2010年   109篇
  2009年   102篇
  2008年   129篇
  2007年   103篇
  2006年   92篇
  2005年   88篇
  2004年   83篇
  2003年   67篇
  2002年   55篇
  2001年   11篇
  2000年   8篇
  1999年   13篇
  1998年   13篇
  1997年   7篇
  1996年   11篇
  1995年   9篇
  1994年   3篇
  1993年   6篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1980年   3篇
  1979年   18篇
  1977年   6篇
  1976年   7篇
  1975年   4篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   3篇
  1969年   6篇
  1967年   4篇
  1963年   2篇
排序方式: 共有2197条查询结果,搜索用时 0 毫秒
131.
Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p‐T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant‐negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time‐dependent augmentation of AKT S473 and GSK‐3α S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK‐3α was not dependent on PI3K activity. PKR inhibition augmented levels of p‐S473 AKT and p‐S21/9 GSK‐3α/β in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK‐3α or β phosphorylation in the presence of the AKT inhibitor, A443654. Pre‐treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2α, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2α phosphorylation. The effects of PKR inhibition on AKT and GSK‐3 phosphorylation were found to be, in part, PP2A‐dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK‐3. J. Cell. Physiol. 221: 232–241, 2009. © 2009 Wiley‐Liss, Inc  相似文献   
132.
Targeted delivery of tumor-associated antigens to professional antigen-presenting cells (APC) is being explored as a strategy to enhance the antitumoral activity of cancer vaccines. Here, we generated a cell-based system for continuous in vivo production of a CTLA-4-ErbB2 fusion protein as a therapeutic vaccine. The chimeric CTLA-4-ErbB2 molecule contains the extracellular domain of CTLA-4 for specific targeting to costimulatory B7 molecules on the surface of APC, genetically fused to residues 1-222 of human ErbB2 (HER2) as an antigenic determinant. In wild-type BALB/c mice, inoculation of syngeneic epithelial cells continuously secreting the CTLA-4-ErbB2 fusion vaccine in the vicinity of subcutaneously growing ErbB2-expressing renal cell carcinomas resulted in the rejection of established tumors, accompanied by the induction of ErbB2-specific antibodies and cytotoxic T cells. In contrast, treatment with CTLA-4-ErbB2 vaccine-secreting producer cells alone was insufficient to induce tumor rejection in ErbB2-transgenic WAP-Her-2 F1 mice, which are characterized by pronounced immunological tolerance to the human self-antigen. When CTLA-4-ErbB2 producer cells were modified to additionally secrete interleukin (IL)-15, antigen-specific antitumoral activity of the vaccine in WAP-Her-2 F1 mice was restored, documented by an increase in survival, and marked inhibition of the growth of established ErbB2-expressing, but not antigen-negative tumors. Our results demonstrate that continuous in vivo expression of an APC-targeted ErbB2 fusion protein results in antigen-specific immune responses and antitumoral activity in tumor-bearing hosts, which is augmented by the pleiotropic cytokine IL-15. This provides a rationale for further development of this approach for specific cancer immunotherapy.  相似文献   
133.
The extracellular domain of the receptor tyrosine kinase Tie2/TEK (exTEK) has been used as an angiopoietin decoy to study the role of angiopoietins in the tumor–host interactions, using a syngeneic model of experimental metastases and subcutaneous tumor. Soluble exTEK secreted by transfected tumor cells inhibited HUVECs from forming tubes in Matrigel. ExTEK-transfected C26 colon carcinoma and TS/A mammary tumor cells displayed reduced growth rate when injected subcutaneously, and reduced ability to form experimental metastases when injected intravenously. Immunohistochemical analysis of tumors and metastases showed increased leukocytes infiltration and signs of inflammation in exTEK-secreting compared to parental tumor, as well as impairment in neo-vessel growth and organization. However, while neoangiogenesis eventually rescued in the subcutis, it failed to organize in the experimental metastases of exTEK-secreting tumor, contributing to the hampering of metastatic growth and to increased mice survival. The reactive infiltrate of C26TEK contained a different percentage of leukocytes and was responsible for the tumor inhibition. In fact, leukopenia induced by -irradiation of recipient mice or injection into interferon gamma (IFN-) gene knockout (GKO) mice resulted in reduced mouse survival and an increased number of lung metastases. On the other hand, interleukin (IL)-12 treatment prolonged the survival of mice bearing subcutaneous C26TEK but not of those bearing lung metastases, suggesting that IL-12 could exert further antiangiogenic effects at the site where the tumor can restore neoangiogenesis. These results show in vivo that reduced angiopoietin availability at the tumor site induces a local inflammatory response and impairment of neoangiogenesis which act synergistically to limit tumor growth and metastasis.Abbreviations AEC amino-ethylcarbazole - ELISA enzyme-linked immunosorbent assay - HRP horseradish peroxidase - HUVEC human umbilical vascular endothelial cell - i.v. intravenous - s.c. subcutaneous - TBS Tris-HCl buffered solution  相似文献   
134.
Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers’ protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.  相似文献   
135.
Electrochemical biosensors have found wide application in food and clinical areas, as well as in environmental field. A large number of articles focused on horseradish peroxidase (HRP)-based biosensors have been published in the last decade, due to the capability of HRP to quantitatively detect the presence of hydrogen peroxide produced in a reaction. At present a large body of multi-enzymatic amperometric biosensors are realized by entrapping HRP together with other enzymes into a polymeric matrix; these systems represent a promising example of simple, low-cost electrochemical tools for the analysis of bioanalytes in solution, such as glucose, choline and cholesterol. Due to the fact that polymers used for HRP entrapping are soluble in organic solvents and that many solvents are strong denaturants of aquo-soluble proteins, in this paper we investigate (in particular, by circular dichroism and electron paramagnetic spectroscopies) the effect of dimethyl sulfoxide, one of the organic solvents employed for polymer solubilization, on the structure and the functionality of HRP, in order to determine the effect induced by the solvent concentration on the structure and activity of the hemoprotein. This is relevant for basic and applied biochemistry, HRP being largely employed in bioinorganic chemistry and sensor area.  相似文献   
136.
137.
Fetal cells and DNA have been detected in the maternal circulation during and after pregnancy in a few mammalian species. The incidence of similar microchimerism in cattle could have repercussion for the application of modern biotechnologies such as the transfer of transgenic embryos. To determine if feto-maternal leakage can occur in pregnant cows, we have analyzed maternal blood samples for the presence of fetal DNA during gestation and post-partum periods. Y chromosome-specific DNA was detected in up to 73% of blood samples from naturally mated heifers carrying conventional bull calves and a transgene-specific sequence in up to 50% of recipient cows carrying transgenic fetuses. These findings document for the first time that transplacental leakage of fetal DNA into the maternal circulation can occur in cattle despite the epitheliochorial placenta of ruminants, with potential implications for the utilization of recipient cows in the food chain.  相似文献   
138.
Ab initio calculations (B3LYP/Lanl2DZ level of theory) were performed in this study to determine all the structural and catalytic zinc parameters required in order to study MMPs and their complexes with hydroxamate inhibitors by means of the AMBER force field. The parameters thus obtained were used in order to study the docking of some known MMPi (Batimastat, CGS 27023A and Prinomastat) and our previously described inhibitor a which had shown an inhibitory activity for MMP-1, and -2, with the aim of explaining the different selectivity. On this basis the two enantiomers (R)-b and (S)-b were designed and synthesized, as more potent MMP-2 inhibitors than our previously described inhibitor a. Between these two enantiomers the eutomer (R)-b proved to be 24.7 times and 15.3 times more potent than CGS 27023A and the parent compound a on MMP-2, maintaining a higher index of MMP-2/MMP-1 selectivity compared with CGS 27023A and the more potent inhibitor Prinomastat. The hydroxamate (R)-b can be considered as a progenitor of a new class of biphenylsulfonamido-based inhibitors that differ from compound a in the presence of an alkyl side chain on the C alpha atom, and show different potency and selectivity profiles on the two MMPs considered.  相似文献   
139.
The use of myrtle (Myrtus communis L.) as a culinary spice and as a flavoring agent for alcoholic beverages is widespread in the Mediterranean area, and especially in Sardinia. Myrtle contains unique oligomeric non-prenylated acylphloroglucinols, whose antioxidant activity was investigated in various systems. Both semimyrtucommulone (1) and myrtucommulone A (2) showed powerful antioxidant properties, protecting linoleic acid against free radical attack in simple in vitro systems, inhibiting its autoxidation and its FeCl3- and EDTA-mediated oxidation. While both compounds lacked pro-oxidant activity, semimyrtucommulone was more powerful than myrtucommulone A, and was further evaluated in rat liver homogenates for activity against lipid peroxidation induced by ferric-nitrilotriacetate, and in cell cultures for cytotoxicity and the inhibition of TBH- or FeCl3-induced oxidation. The results of these studies established semimyrtucommulone as a novel dietary antioxidant lead.  相似文献   
140.
Pseudoperonospora cubensis is a biotrophic oomycete pathogen that causes downy mildew of cucurbits, a devastating foliar disease threatening cucurbit production worldwide. We sequenced P. cubensis genomic DNA using 454 pyrosequencing and obtained random genomic sequences covering approximately 14% of the genome, thus providing the first set of useful genomic sequence information for P. cubensis. Using bioinformatics approaches, we identified 32 putative RXLR effector proteins. Interestingly, we also identified 29 secreted peptides with high similarity to RXLR effectors at the N-terminal translocation domain, yet containing an R-to-Q substitution in the first residue of the translocation motif. Among these, a family of QXLR-containing proteins, designated as PcQNE, was confirmed to have a functional signal peptide and was further characterized as being localized in the plant nucleus. Internalization of secreted PcQNE into plant cells requires the QXLR-EER motif. This family has a large number of near-identical copies within the P. cubensis genome, is under diversifying selection at the C-terminal domain, and is upregulated during infection of plants, all of which are common characteristics of characterized oomycete effectors. Taken together, the data suggest that PcQNE are bona fide effector proteins with a QXLR translocation motif, and QXLR effectors are prevalent in P. cubensis. Furthermore, the massive duplication of PcQNE suggests that they might play pivotal roles in pathogen fitness and pathogenicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号