首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2675篇
  免费   177篇
  2852篇
  2023年   14篇
  2022年   36篇
  2021年   80篇
  2020年   37篇
  2019年   53篇
  2018年   69篇
  2017年   48篇
  2016年   81篇
  2015年   126篇
  2014年   139篇
  2013年   192篇
  2012年   229篇
  2011年   248篇
  2010年   138篇
  2009年   121篇
  2008年   159篇
  2007年   126篇
  2006年   116篇
  2005年   108篇
  2004年   118篇
  2003年   89篇
  2002年   85篇
  2001年   34篇
  2000年   33篇
  1999年   28篇
  1998年   19篇
  1997年   12篇
  1996年   19篇
  1995年   20篇
  1994年   12篇
  1993年   14篇
  1992年   23篇
  1991年   22篇
  1990年   15篇
  1989年   11篇
  1988年   12篇
  1987年   15篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1982年   7篇
  1981年   11篇
  1980年   6篇
  1979年   13篇
  1978年   9篇
  1977年   9篇
  1976年   10篇
  1975年   10篇
  1973年   6篇
排序方式: 共有2852条查询结果,搜索用时 15 毫秒
81.
82.
We recently reported that mast cells stimulated via FcepsilonRI aggregation can enhance T cell activation by a TNF-dependent mechanism. However, the molecular mechanisms responsible for such IgE-, Ag- (Ag-), and mast cell-dependent enhancement of T cell activation remain unknown. In this study we showed that mouse bone marrow-derived cultured mast cells express various costimulatory molecules, including members of the B7 family (ICOS ligand (ICOSL), PD-L1, and PD-L2) and the TNF/TNFR families (OX40 ligand (OX40L), CD153, Fas, 4-1BB, and glucocorticoid-induced TNFR). ICOSL, PD-L1, PD-L2, and OX40L also are expressed on APCs such as dendritic cells and can modulate T cell function. We found that IgE- and Ag-dependent mast cell enhancement of T cell activation required secreted TNF; that TNF can increase the surface expression of OX40, ICOS, PD-1, and other costimulatory molecules on CD3(+) T cells; and that a neutralizing Ab to OX40L, but not neutralizing Abs to ICOSL or PD-L1, significantly reduced IgE/Ag-dependent mast cell-mediated enhancement of T cell activation. These results indicate that the secretion of soluble TNF and direct cell-cell interactions between mast cell OX40L and T cell OX40 contribute to the ability of IgE- and Ag-stimulated mouse mast cells to enhance T cell activation.  相似文献   
83.
The conformational behavior of methyl(2-O-methyl-alpha-L-rhamnopyranosyl)phosphate, together with a group of potentially more stable analogues, was investigated through a DFT approach at the B3LYP/6-31G(d) level; the energy of all the optimized structures was recalculated using a continuum solvent model, C-PCM, choosing water as the solvent. The compounds exhibited several, sometimes tenths of populated conformations so that the overall properties of flexibility and mobility were evaluated. The analogue in which the pyranose oxygen atom is replaced by a methylene group emerges as the best candidate as a mimic of the reference 1-phosphate, in spite of the fact that it lacks the anomeric and exo-anomeric effects. The other analogues result poorer mimics because of a conformational equilibrium at the pyranose ring or of an excessive rigidity of the aglycone moiety.  相似文献   
84.
We have characterized the ferric and ferrous forms of the heme-containing (1-56 residues) N-fragment of horse heart cytochrome c (cyt c) at different pH values and low ionic strength by UV-visible absorption and resonance Raman (RR) scattering. The results are compared with native cyt c in the same experimental conditions as this may provide a deeper insight into the cyt c unfolding-folding process. Folding of cyt c leads to a state having the heme iron coordinated to a histidine (His18) and a methionine (Met80) as axial ligands. At neutral pH the N-fragment (which lacks Met80) shows absorption and RR spectra that are consistent with the presence of a bis-His low spin heme, like several non-native forms of the parental protein. In particular, the optical spectra are identical to those of cyt c in the presence of a high concentration of denaturants; this renders the N-fragment a suitable model to study the heme pocket microenvironment of the misfolded (His-His) intermediate formed during folding of cyt c. Acid pH affects the ligation state in both cyt c and the N-fragment. Data obtained as a function of pH allow a correlation between the structural properties in the heme pocket of the N-fragment and those of non-native forms of cyt c. The results underline that the (57-104 residues) segment under native-like conditions imparts structural stability to the protein by impeding solvent access into the heme pocket.  相似文献   
85.
People with Down syndrome, a frequent genetic disorder in humans, have increased risk of health problems associated with this condition. One clinical feature of Down syndrome is the increased prevalence and severity of periodontal disease in comparison with the general population. Because saliva plays an important role in maintaining oral health, in the present study the salivary proteome of Down syndrome subjects was investigated to explore modifications with respect to healthy subjects. Whole saliva of 36 Down syndrome subjects, divided in the age groups 10–17 yr and 18–50 yr, was analyzed by a top-down proteomic approach, based on the high performance liquid chromatography-electrospray ionization–MS analysis of the intact proteins and peptides, and the qualitative and quantitative profiles were compared with sex- and age-matched control groups. The results showed the following interesting features: 1) as opposed to controls, in Down syndrome subjects the concentration of the major salivary proteins of gland origin did not increase with age; as a consequence concentration of acidic proline rich proteins and S cystatins were found significantly reduced in older Down syndrome subjects with respect to matched controls; 2) levels of the antimicrobial α-defensins 1 and 2 and histatins 3 and 5 were significantly increased in whole saliva of older Down syndrome subjects with respect to controls; 3) S100A7, S100A8, and S100A12 levels were significantly increased in whole saliva of Down syndrome subjects in comparison with controls. The increased level of S100A7 and S100A12 may be of particular interest as a biomarker of early onset Alzheimer''s disease, which is frequently associated with Down syndrome.Down syndrome (DS)1 is a frequent genetic disorder in humans characterized by premature aging (1). A clinical feature of people with DS is the increased prevalence and severity of periodontal disease compared with age-matched subjects of similar levels of intellectual impairment and compared with the general population (2). Common conditions observed in DS are marginal gingivitis, acute and subacute necrotizing gingivitis, advanced periodontitis, gingival recession, and pocket formation (3, 4). It is known that saliva plays an important role in maintaining oral and dental health, because of the presence of a variety of antimicrobial peptides mainly derived from gland secretion, oral epithelial cells, and neutrophils (5). Several papers reported that neutrophils and T-lymphocyte function is impaired in people with DS (69). However, the salivary secretion of the antimicrobial LL-37 in young individuals with DS was found normal (10). A review of the literature (11, 12) reveals only sporadic and contradictory reports that attempt to explain the role of saliva in the oral health of subjects with DS, and on the whole, information on the biochemical composition of their saliva is scarce. On the basis of the above information, in the present study, we proposed to investigate the salivary proteome of DS subjects by an intact protein-based “top-down” approach. The spectrum of salivary peptides of DS subjects was compared with that of sex and age-matched healthy control groups to determine qualitative and quantitative differences. Interestingly, the results showed that several members of the S100A family, which possess different biological functions, and also described as potential markers of the Alzheimer Disease, were significantly increased in saliva of Down syndrome subjects with respect to controls.  相似文献   
86.
The anti-amyloid properties shared by several quinones inspired the design of a new series of hybrids derived from the multi-target drug candidate memoquin (1). The hybrids consist of a central benzoquinone core and a fragment taken from non-steroidal anti-inflammatory drugs, connected through polyamine linkers. The new hybrids retain the potent anti-aggregating activity of the parent 1, while exhibiting micromolar AChE inhibitory activities. Remarkably, 2, 4, (R)-6 and (S)-6 were Aβ aggregation inhibitors even more potent than 1. The balanced amyloid/cholinesterase inhibitory profile is an added value that makes the present series of compounds promising leads against Alzheimer’s disease.  相似文献   
87.
Smac-DIABLO in its mature form (20.8 kDa) binds to baculoviral IAP repeat (BIR) domains of inhibitor of apoptosis proteins (IAPs) releasing their inhibitory effects on caspases, thus promoting cell death. Despite its apparent molecular mass (∼100 kDa), Smac-DIABLO was held to be a dimer in solution, simultaneously targeting two distinct BIR domains. We report an extensive biophysical characterization of the protein alone and in complex with the X-linked IAP (XIAP)-BIR2-BIR3 domains. Our data show that Smac-DIABLO adopts a tetrameric assembly in solution and that the tetramer is able to bind two BIR2-BIR3 pairs of domains. Our small-angle x-ray scattering-based tetrameric model of Smac-DIABLO/BIR2-BIR3 highlights some conformational freedom of the complex that may be related to optimization of IAPs binding.  相似文献   
88.
Two models have been proposed to explain the interaction of cytochrome c with cardiolipin (CL) vesicles. In one case, an acyl chain of the phospholipid accommodates into a hydrophobic channel of the protein located close the Asn52 residue, whereas the alternative model considers the insertion of the acyl chain in the region of the Met80-containing loop. In an attempt to clarify which proposal offers a more appropriate explanation of cytochrome c–CL binding, we have undertaken a spectroscopic and kinetic study of the wild type and the Asn52Ile mutant of iso-1-cytochrome c from yeast to investigate the interaction of cytochrome c with CL vesicles, considered here a model for the CL-containing mitochondrial membrane. Replacement of Asn52, an invariant residue located in a small helix segment of the protein, may provide data useful to gain novel information on which region of cytochrome c is involved in the binding reaction with CL vesicles. In agreement with our recent results revealing that two distinct transitions take place in the cytochrome c–CL binding reaction, data obtained here support a model in which two (instead of one, as considered so far) adjacent acyl chains of the liposome are inserted, one at each of the hydrophobic sites, into the same cytochrome c molecule to form the cytochrome c–CL complex.  相似文献   
89.
Cyclic ADP-ribose (cADPR) is an intracellular calcium mobilizer generated from NAD(+) by the ADP-ribosyl cyclases CD38 and BST-1. cADPR, both exogenously added and paracrinally produced by a CD38(+) feeder layer, has recently been demonstrated to stimulate the in vitro proliferation of human hemopoietic progenitors (HP) and also the in vivo expansion of hemopoietic stem cells. The low density of BST-1 expression on bone marrow (BM) stromal cells and the low specific activity of the enzyme made it unclear whether cADPR generation by a BST-1(+) stroma could stimulate HP proliferation in the BM microenvironment. We developed and characterized two BST-1(+) stromal cell lines, expressing an ectocellular cyclase activity similar to that of BST-1(+) human mesenchymal stem cells, the precursors of BM stromal cells. Long term co-culture of cord blood-derived HP over these BST-1(+) feeders determined their expansion. Influx of paracrinally generated cADPR into clonogenic HP was mediated by a concentrative, nitrobenzylthioinosine- and dipyridamole-inhibitable nucleoside transporter, this providing a possible explanation to the effectiveness of the hormone-like concentrations of the cyclic nucleotide measured in the medium conditioned by BST-1(+) feeders. These results suggest that the BST-1-catalyzed generation of extracellular cADPR, followed by the concentrative uptake of the cyclic nucleotide by HP, may be physiologically relevant in normal hemopoiesis.  相似文献   
90.
The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC50 5?nM), is not cytotoxic (HeLa CC50?>?25,000?nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC50 8120?nM, P. falciparum EC50 3624?nM).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号