首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   5篇
  65篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1988年   1篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有65条查询结果,搜索用时 0 毫秒
41.

Background

Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity.

Methods

MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses.

Results

After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months.

Conclusions

These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice.  相似文献   
42.
We have determined the nucleotide sequence of a 1,200-base pair (bp) genomic fragment that includes the kappa-chain constant-region gene (C kappa) from two species of native Australian rodents, Rattus leucopus cooktownensis and Rattus colletti. Comparison of these sequences with each other and with other rodent C kappa genes shows three surprising features. First, the coding regions are diverging at a rate severalfold higher than that of the nearby noncoding regions. Second, replacement changes within the coding region are accumulating at a rate at least as great as that of silent changes. Third, most of the amino acid replacements are localized in one region of the C kappa domain--namely, the carboxy-terminal "bends" in the alpha-carbon backbone. These three features have previously been described from comparisons of the two allelic forms of C kappa genes in R. norvegicus. These data imply the existence of considerable evolutionary constraints on the noncoding regions (based on as yet undetermined functions) or powerful positive selection to diversify a portion of the constant-region domain (whose physiological significance is not known). These surprising features of C kappa evolution appear to be characteristic only of closely related C kappa genes, since comparison of rodent with human sequences shows the expected greater conservation of coding regions, as well as a predominance of silent nucleotide substitutions within the coding regions.   相似文献   
43.

Background

Cellular infection with human immunodeficiency virus (HIV) both in vitro and in vivo requires a member of the chemokine receptor family to act as a co-receptor for viral entry. However, it is presently unclear to what extent the interaction of HIV proteins with chemokine receptors generates intracellular signals that are important for productive infection.

Results

In this study we have used a recently described family of chemokine inhibitors, termed BSCIs, which specifically block chemokine-induced chemotaxis without affecting chemokine ligands binding to their receptors. The BSCI termed Peptide 3 strongly inhibited CCR5 mediated HIV infection of THP-1 cells (83 ± 7% inhibition assayed by immunofluoresence staining), but had no effect on gp120 binding to CCR5. Peptide 3 did not affect CXCR4-dependent infection of Jurkat T cells.

Conclusion

These observations suggest that, in some cases, intracellular signals generated by the chemokine coreceptor may be required for a productive HIV infection.  相似文献   
44.
Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.  相似文献   
45.
46.
Beta-globin gene families in eutherians (placental mammals) consist of a set of four or more developmentally regulated genes which are closely linked and, in general, arranged in the order 5'-embryonic/fetal genes- adult genes-3'. This cluster of genes is proposed to have arisen by tandem duplication of ancestral beta-globin genes, with the first duplication occurring 200 to 155 MYBP just prior to a period in mammalian evolution when eutherians and marsupials diverged from a common ancestor. In this paper we trace the evolutionary history of the beta-globin gene family back to the origins of these mammals by molecular characterization of the beta-globin gene family of the Australian marsupial Sminthopsis crassicaudata. Using Southern and restriction analysis of total genomic DNA and bacteriophage clones of beta-like globin genes, we provide evidence that just two functional beta-like globin genes exist in this marsupial, including one embryonic- expressed gene (S.c-epsilon) and one adult-expressed gene (S.c-beta), linked in the order 5'-epsilon-beta-3'. The entire DNA sequence of the adult beta-globin gene is reported and shown to be orthologous to the adult beta-globin genes of the North American marsupial Didelphis virginiana and eutherian mammals. These results, together with results from a phylogenetic analysis of mammalian beta-like globin genes, confirm the hypothesis that a two-gene cluster, containing an embryonic- and an adult-expressed beta-like globin gene, existed in the most recent common ancester of marsupials and eutherians. Northern analysis of total RNA isolated from embryos and neonatals indicates that a switch from embryonic to adult gene expression occurs at the time of birth, coinciding with the transfer of the marsupial from a uterus to a pouch environment.   相似文献   
47.

Background

Immunogenetic evidence indicates that cytotoxic T lymphocytes (CTLs) specific for the weak CTL antigen HBZ limit HTLV-1 proviral load in vivo, whereas there is no clear relationship between the proviral load and the frequency of CTLs specific for the immunodominant antigen Tax. In vivo, circulating HTLV-1-infected cells express HBZ mRNA in contrast, Tax expression is typically low or undetectable. To elucidate the virus-suppressing potential of CTLs targeting HBZ, we compared the ability of HBZ- and Tax-specific CTLs to lyse naturally-infected cells, by co-incubating HBZ- and Tax-specific CTL clones with primary CD4+ T cells from HLA-matched HTLV-1-infected donors. We quantified lysis of infected cells, and tested whether specific virus-induced host cell surface molecules determine the susceptibility of infected cells to CTL-mediated lysis.

Results

Primary infected cells upregulated HLA-A*02, ICAM-1, Fas and TRAIL-R1/2 in concert with Tax expression, forming efficient targets for both HTLV-1-specific CTLs and CTLs specific for an unrelated virus. We detected expression of HBZ mRNA (spliced isoform) in both Tax-expressing and non-expressing infected cells, and the HBZ26–34 epitope was processed and presented by cells transfected with an HBZ expression plasmid. However, when coincubated with primary cells, a high-avidity HBZ-specific CTL clone killed significantly fewer infected cells than were killed by a Tax-specific CTL clone. Finally, incubation with Tax- or HBZ-specific CTLs resulted in a significant decrease in the frequency of cells expressing high levels of HLA-A*02.

Conclusions

HTLV-1 gene expression in primary CD4+ T cells non-specifically increases susceptibility to CTL lysis. Despite the presence of HBZ spliced-isoform mRNA, HBZ epitope presentation by primary cells is significantly less efficient than that of Tax.
  相似文献   
48.
49.
50.
Present communication reports laboratory and pot experiments conducted to study the influence of water and osmotic stress on nitrogen uptake and metabolism in two wheat (Triticum aestivum L) cultivars with and without potassium supplementation. Polyethylene glycol 6000-induced osmotic stress/restricted irrigation caused a considerable decline in the activity of nitrate reductase, glutamate synthase, alanine and aspartate aminotransferases, and glutamate dehydrogenase. Potassium considerably improved nitrogen metabolism under normal water supply conditions and also resulted in amelioration of the negative impact of water and osmotic stresses indicating that potassium supplementation can be used as a potential tool for enhancing the nitrogen use efficiency in wheat for exploiting its genetic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号