首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   15篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   12篇
  2013年   12篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1988年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   2篇
  1962年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
21.
Global nitrogen (N) deposition rates in terrestrial environments have quadrupled since preindustrial times, causing structural and functional changes of ecosystems. Different emission reduction policies were therefore devised. The aim of our study was to investigate if, and over what timescale, processes of soil organic matter (OM) transformation respond to a decline in atmospheric N deposition. A N‐saturated spruce forest (current N deposition: 34 kg ha?1 yr?1; critical N load: 14 kg ha?1 yr?1), where N deposition has been reduced to 11.5 kg ha?1 yr?1 since 1991, was studied. Besides organic C and organic and inorganic N, noncellulosic carbohydrates, amino sugars and amino acids were determined. A decline in organic N in litter indicated initial effects at plant level. However, there were no changes in biomarkers upon the reduction in N deposition. In addition, inorganic N was not affected by reduced N deposition. The results showed that OM cycling and transformation processes have not responded so far. It was concluded that no direct N deposition effects have occurred due to the large amount of stored organic N, which seems to compensate for the reduction in deposited N. Obviously, the time span of atmospheric N reduction (about 14.5 years) is too short compared with the mean turnover time of litter to cause indirect effects on the composition of organic C and N compounds. It is assumed that ecological processes, such as microbial decomposition or recycling of organic N and C, react slowly, but may start within the next decade with the incorporation of the new litter.  相似文献   
22.
23.
BackgroundDecreased hepatitis C virus (HCV) clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV) coinfection. The CD4+ T helper cytokines interleukin (IL)-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control.MethodsWe measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels.ResultsIn acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21.ConclusionsThese data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals.  相似文献   
24.
25.
PROTEIN filaments are characteristic structural components of the assimilatory conducting elements of angiosperm plants (“P protein” of Cronshaw and Esau1). We have isolated filamentous structures from the phloem exudate of cut cucurbit stems2. The presence of the filaments could be clearly demonstrated after negative staining with the electron microscope.  相似文献   
26.
Synthesis and cytotoxicity of imidazo[5,4-f]benzimidazolequinones and iminoquinone derivatives is described, enabling structure-activity relationships to be obtained. The most promising compound (an iminoquinone derivative) has undergone National Cancer Institute (NCI) 60 cell line (single and five dose) screening, and using the NCI COMPARE program, has shown correlation to NQO1 activity and to other NQO1 substrates. Common structural features suggest that the iminoquinone moiety is significant with regard to NQO1 specificity. Computational docking into the active site of NQO1 was performed, and the first comprehensive mitomycin C (MMC)-NQO1 docking study is presented. Small distances for hydride reduction and high binding affinities are characteristic of MMC and of iminoquinones showing correlations with NQO1 via COMPARE analysis. Docking also indicated that the presence of a substituent capable of hydrogen bonding to the His194 residue is important in influencing the orientation of the substrate in the NQO1 active site, leading to more efficient reduction.  相似文献   
27.
28.
The Src homology 2 domain-containing protein-tyrosine phosphatase Shp2 has been implicated in a variety of growth factor signaling pathways, but its role in insulin signaling has remained unresolved. In vitro studies suggest that Shp2 is both a negative and positive regulator of insulin signaling, although its physiological function in a number of peripheral insulin-responsive tissues remains unknown. To address the metabolic role of Shp2 in the liver, we generated mice with either chronic or acute hepatic Shp2 deletion using tissue-specific Cre-LoxP and adenoviral Cre approaches, respectively. We then analyzed insulin sensitivity, glucose tolerance, and insulin signaling in liver-specific Shp2-deficient and control mice. Mice with chronic Shp2 deletion exhibited improved insulin sensitivity and increased glucose tolerance compared with controls. Acute Shp2 deletion yielded comparable results, indicating that the observed metabolic effects are directly caused by the lack of Shp2 in the liver. These findings correlated with, and were most likely caused by, direct dephosphorylation of insulin receptor substrate (IRS)1/2 in the liver, accompanied by increased PI3K/Akt signaling. In contrast, insulin-induced ERK activation was dramatically attenuated, yet there was no effect on the putative ERK site on IRS1 (Ser612) or on S6 kinase 1 activity. These studies show that Shp2 is a negative regulator of hepatic insulin action, and its deletion enhances the activation of PI3K/Akt pathway downstream of the insulin receptor.  相似文献   
29.

Background

Epistatic interactions of multiple single nucleotide polymorphisms (SNPs) are now believed to affect individual susceptibility to common diseases. The detection of such interactions, however, is a challenging task in large scale association studies. Ant colony optimization (ACO) algorithms have been shown to be useful in detecting epistatic interactions.

Findings

AntEpiSeeker, a new two-stage ant colony optimization algorithm, has been developed for detecting epistasis in a case-control design. Based on some practical epistatic models, AntEpiSeeker has performed very well.

Conclusions

AntEpiSeeker is a powerful and efficient tool for large-scale association studies and can be downloaded from http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号