排序方式: 共有87条查询结果,搜索用时 11 毫秒
61.
Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice 总被引:17,自引:0,他引:17
Haj FG Zabolotny JM Kim YB Kahn BB Neel BG 《The Journal of biological chemistry》2005,280(15):15038-15046
Protein-tyrosine phosphatase 1B (PTP1B) is an important negative regulator of insulin and leptin signaling in vivo. Mice lacking PTP1B (PTP1B-/- mice) are hyper-responsive to insulin and leptin and resistant to diet-induced obesity. The tissue(s) that mediate these effects of global PTP1B deficiency remain controversial. We exploited the high degree of hepatotropism of adenoviruses to assess the role of PTP1B in the liver. Liver-specific re-expression of PTP1B in PTP1B-/- mice led to marked attenuation of their enhanced insulin sensitivity. This correlated with, and was probably caused by, decreased insulin-stimulated tyrosyl phosphorylation of the insulin receptor (IR) and IR substrate 2-associated phosphatidylinositide 3-kinase activity. Analysis using phospho-specific antibodies for the IR revealed preferential dephosphorylation of Tyr-1162/1163 compared with Tyr-972 by PTP1B in vivo. Our findings show that the liver is a major site of the peripheral action of PTP1B in regulating glucose homeostasis. 相似文献
62.
Abdullah Hamadi Rashid Mir Ali Mahzari Abdulrahim Hakami Reema Almotairi Gasim Dobie Fawaz Hamdi Mohammed Hassan Nahari Razan Alhefzi Mohammed Alasseiri Nora Y. Hakami Hadeel Al Sadoun Osama M. Al-Amer Jameel Barnawi Hassan A. Madkhali 《Current issues in molecular biology》2022,44(6)
Recent studies have indicated that microRNA and VEGF are considered to be genetic modifiers and are associated with elevated levels of fetal haemoglobin HbF, and thus they reduce the clinical impact of sickle haemoglobin (HbS) patients. This cross-sectional study was performed on clinical confirmed subjects of SCD cases. miR-423-rs6505162 C>T and VEGF-2578 C>A genotyping was conducted by ARMS-PCR in SCD and healthy controls. A strong clinical significance was reported while comparing the association of miR-423 C>T genotypes between SCD patients and controls (p = 0.031). The microRNA-423 AA genotype was associated with an increased severity of SCD in codominant model with odd ratio (OR = 2.36, 95% CI, (1.15–4.84), p = 0.018) and similarly a significant association was observed in recessive inheritance model for microRNA-423 AA vs (CC+CA) genotypes (OR = 2.19, 95% CI, (1.32–3.62), p < 0.002). The A allele was associated with SCD severity (OR = 1.57, 95% CI, (1.13–2.19), p < 0.007). The distribution of VEGF-2578 C>A genotypes between SCD patients and healthy controls was significant (p < 0.013). Our results indicated that in the codominant model, the VEGF-2578-CA genotype was strongly associated with increased SCD severity with OR = 2.56, 95% CI, (1.36–4.82), p < 0.003. The higher expression of HbA1 (65.9%), HbA2 (4.40%), was reported in SCD patients carrying miR-423-AA genotype than miR-423 CA genotype in SCD patients carrying miR-423 CA genotype HbA1 (59.98%), HbA2 (3.74%) whereas SCD patients carrying miR-423 CA genotype has higher expression of HbF (0.98%) and HbS (38.1%) than in the patients carrying AA genotype HbF (0.60%), HbS (36.1%). ARMS-PCR has been proven to be rapid, inexpensive and is highly applicable to gene mutation screening in laboratories and clinical practices. This research highlights the significance of elucidating genetic determinants that play roles in the amelioration of the HbF levels that is used as an indicator of severity of clinical complications of the monogenic disease. Further well-designed studies with larger sample sizes are necessary to confirm our findings. 相似文献
63.
Regulation of protein tyrosine phosphatase 1B by sumoylation 总被引:3,自引:0,他引:3
Dadke S Cotteret S Yip SC Jaffer ZM Haj F Ivanov A Rauscher F Shuai K Ng T Neel BG Chernoff J 《Nature cell biology》2007,9(1):80-85
Protein-tyrosine phosphatase 1B (PTP1B) is an ubiquitously expressed enzyme that negatively regulates growth-factor signalling and cell proliferation by binding to and dephosphorylating key receptor tyrosine kinases, such as the insulin receptor. It is unclear how the activity of PTP1B is regulated. Using a yeast two-hybrid assay, a protein inhibitor of activated STAT1 (PIAS1) was isolated as a PTP1B-interacting protein. Here, we show that PIAS1, which functions as a small ubiquitin-like modifier (SUMO) E3 ligase, associates with PTP1B in mammalian fibroblasts and catalyses sumoylation of PTP1B. Sumoylation of PTP1B reduces its catalytic activity and inhibits the negative effect of PTP1B on insulin receptor signalling and on transformation by the oncogene v-crk. Insulin-stimulated sumoylation of endogenous PTP1B results in a transient downregulation of the enzyme; this event does not occur when the endogenous enzyme is replaced with a sumoylation-resistant mutant of PTP1B. These results suggest that sumoylation, which has been implicated primarily in processes in the nucleus and nuclear pore, also modulates a key enzyme-substrate signalling complex that regulates metabolism and cell proliferation. 相似文献
64.
65.
Minna Moreira Dias Romano Henrique Turin Moreira Jos Antnio Marin-Neto Priscila Elias Baccelli Fawaz Alenezi Igor Klem Benedito Carlos Maciel Joseph Kisslo Andr Schmidt Eric J. Velazquez 《PLoS neglected tropical diseases》2020,14(11)
Chagas disease (CD) will account for 200,000 cardiovascular deaths worldwide over the next 5 years. Early detection of chronic Chagas cardiomyopathy (CCC) is a challenge. We aimed to test if speckle-tracking echocardiography (STE) can detect incipient myocardial damage in CD. METHODS: Among 325 individuals with positive serological tests, 25 (age 55±12yrs) were selected to compose the group with indeterminate form of Chagas disease (IFCD), based on stringent criteria of being asymptomatic and with normal EKG/X-ray studies. This group was compared with a group of 20 patients with CCC (55±11yrs) and a group of 20 non-infected matched control (NC) subjects (48±10yrs). CD patients and NC were submitted to STE and CD patients were submitted to cardiac magnetic resonance (CMR) with late gadolinium administration to detect cardiac fibrosis by the late enhancement technique. Global longitudinal strain (GLS), circumferential (GCS) and radial strain (GRS) were defined as the average of segments measured from three apical view (GLS) and short axis views (GRS and GCS). Regional left ventricular (LV) longitudinal strain (Reg LS) was measured from each of the 17 segments. Twist was measured as systolic peak difference between basal and apical rotation and indexed to LV length to express torsion. RESULTS: STE global indices (GLS, GCS, twist and torsion) were reduced in CCC vs NC (GLS: -14±6.3% vs -19.3±1.6%, p = 0.001; GCS: -13.6±5.2% vs -17.3 ±2.8%; p = 0.008; twist: 8±7° vs 14±7°, p = 0.01 and torsion: 0.96±1°/cm vs 1.9±1°/cm, p = 0.005), but showed no differences in IFCD vs NC. RegLS was reduced in IFCD vs NC in four LV segments: basal-inferior (-16.3±3.3% vs -18.6±2.2%, p = 0.013), basal inferoseptal (-13.1±3.4 vs -15.2±2.7, p = 0.019), mid-inferoseptal (-17.7±3.2 vs -19.4±2, p = 0.032) and mid-inferolateral (-15.2±3.5 vs -17.8±2.8, p = 0.014). These abnormalities in RegLS occurred in the absence of myocardial fibrosis detectable with CMR in nearly 92% of subjects with IFCD, while myocardial fibrosis was present in 65% with CCC. CONCLUSION: RegLS detects early regional impairment of myocardial strain that is independent from fibrosis in IFCD subjects. 相似文献
66.
67.
Brominated flame retardants (BFRs) are chemicals commonly used to reduce the flammability of consumer products and are considered pollutants since they have become widely dispersed throughout the environment and have also been shown to bio-accumulate within animals and man. This study investigated the cytotoxicity of some of the most commonly used groups of BFRs on SH-SY5Y human neuroblastoma cells. The results showed that of the BFRs tested, hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBPA) and decabromodiphenyl ether (DBPE), all are cytotoxic at low micromolar concentrations (LC(50) being 2.7 ± 0.7 μM, 15 ± 4 μM and 28 ± 7 μM, respectively). They induced cell death, at least in part, by apoptosis through activation of caspases. They also increased intracellular [Ca(2+)] levels and reactive-oxygen-species within these neuronal cells. Furthermore, these BFRs also caused rapid depolarization of the mitochondria and cytochrome c release in these neuronal cells. Elevated intracellular [Ca(2+)] levels appear to occur through a mechanism involving microsomal Ca(2+)-ATPase inhibition and this maybe responsible for Ca(2+)-induced mitochondrial dysfunction. In addition, μM levels of these BFRs caused β-amyloid peptide (Aβ-42) processing and release from these cells with a few hours of exposure. These results therefore shows that these pollutants are both neurotoxic and amyloidogenic in-vitro. 相似文献
68.
Ahmed Bettaieb Jesse Bakke Naoto Nagata Kosuke Matsuo Yannan Xi Siming Liu Daniel AbouBechara Ramzi Melhem Kimber Stanhope Bethany Cummings James Graham Andrew Bremer Sheng Zhang Costas A. Lyssiotis Zhong-Yin Zhang Lewis C. Cantley Peter J. Havel Fawaz G. Haj 《The Journal of biological chemistry》2013,288(24):17360-17371
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity. 相似文献
69.
Fawaz FS Elsheikh MA Ogawa Y Files JG McCaman MT Pungor E 《Analytical biochemistry》2005,342(1):34-44
A bioassay that measures the potency of the FGF-4 transgene carried by a replication incompetent adenovirus type 5, Ad5FGF-4, was developed on ARPE-19 cells. The assay is carried out in a microtiter plate format and measures cellular proliferation following infection of ARPE-19 cells with a serial dilution of Ad5FGF-4. Proliferation is measured as a percentage increase in absorbance reading in relation to a mock-infected control. Ad5LacZ and Ad5FGF-4 viruses treated similarly to the test sample are included as negative and positive controls, respectively. The increased absorbance reading resulting from infection with the virus correlates with FGF-4 production as determined by an FGF-4 enzyme-linked immunosorbent assay, an increase in de novo DNA synthesis as measured by BrdU incorporation, and an increase in the total cell number. The assay shows a dose-dependent response and is capable of evaluating the stability of Ad5FGF-4. A sample being tested is compared with a reference standard, and the relative potency value is obtained by a parallel line analysis of the dose-response curve of the test article in relation to the reference standard. Therefore, this procedure can be used as an in vitro efficacy-indicating assay, demonstrating that the FGF-4 transgene product carried by Ad5FGF-4 is biologically active. 相似文献
70.
Cherine N. Fawaz Iman S. Makki Jalal M. Kazan Nour Y. Gebara Farah S. Andary Muheiddine M. Itani 《Expert review of proteomics》2015,12(6):637-650
Multiple sclerosis (MS) is a complex disease characterized by extensive phenotypic variability. Biomarkers to capture the different aspects of MS heterogeneity, and to help make a diagnosis and monitor disease progression, while providing insights into etiopathogenesis and response to treatment, are urgently needed. Omics technologies and research efforts with microRNAs have provide unparalleled opportunities for exploring altered protein profiles associated with molecular mechanisms of disease, substantially expanding the list of candidate biomarkers for MS. This review presents evidence from proteomic studies that have focused on identification of biomarkers released in biofluids as a result of the different pathophysiological processes of MS. Also discussed is the emerging role of miRNAs as complementary biomarkers related to cellular processes occurring in MS patients. Also provided is an overview of candidate biomarkers that have been proposed for elucidating pathophysiological processes and disease activity and for guiding clinical diagnosis and/or therapeutic interventions in MS. 相似文献