首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   59篇
  2022年   7篇
  2021年   18篇
  2020年   7篇
  2019年   7篇
  2018年   14篇
  2016年   9篇
  2015年   21篇
  2014年   21篇
  2013年   25篇
  2012年   48篇
  2011年   29篇
  2010年   11篇
  2009年   21篇
  2008年   16篇
  2007年   11篇
  2006年   20篇
  2005年   11篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   12篇
  2000年   8篇
  1999年   10篇
  1998年   11篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1993年   9篇
  1992年   9篇
  1991年   12篇
  1990年   9篇
  1989年   11篇
  1988年   5篇
  1987年   14篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   6篇
  1980年   5篇
  1979年   6篇
  1978年   7篇
  1974年   11篇
  1973年   4篇
  1972年   4篇
  1971年   10篇
  1970年   6篇
  1969年   5篇
  1968年   4篇
  1966年   9篇
  1965年   4篇
排序方式: 共有608条查询结果,搜索用时 47 毫秒
101.
The Bali mynah Species Survival Plan (SSP®), an Association of Zoos and Aquariums program, strives to maintain the genetic and demographic health of its population, avoid unplanned changes in size, and minimize the risk of population extinction. The SSP population meets current demographic and genetic objectives with a population size of 209 birds at 61 institutions and 96% genetic diversity (GD) retained from the source population. However, participating institutions have expressed concerns regarding space allocation, target population size (TPS), breeding restrictions, inbreeding depression, and harvest in relation to future population availability and viability. Based on these factors, we assess five questions with a quantitative risk assessment, specifically a population viability analysis (PVA) using ZooRisk software. Using an individual-based stochastic model, we project potential population changes under different conditions (e.g. changes in TPS and genetic management) to identify the most effective management actions. Our projections indicate that under current management conditions, population decline and extinction are unlikely and that although GD will decline over 100 years the projected loss does not exceed levels acceptable to population managers (less than 90% GD retained). Model simulations indicate that the combination of two genetic management strategies (i.e. priority breeding based on mean kinship and inbreeding avoidance) benefits the retention of GD and reduces the accumulation of inbreeding. The current TPS (250) is greater than necessary to minimize the risk of extinction for the SSP population but any reduction in TPS must be accompanied by continued application of genetic management. If carefully planned, birds can be harvested for transfer to Bali for a reintroduction program without jeopardizing the SSP population. Zoo Biol 28:230–252, 2009. © 2009 Wiley-Liss, Inc.  相似文献   
102.
Potent 5-HT2A inverse-agonists containing phenyl-pyrazole ureas with an amino side chain were identified. Optimization of this series resulted in selective compounds that proved effective in modulating 5HT-induced amplification of ADP-stimulated human platelet aggregation.  相似文献   
103.
A series of new N-substituted (S)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin derivatives has been synthesized and tested as inhibitors of caspases-3 and -7, which are known to be downstream enzymes critical in the execution of apoptosis. N-Propyl- and N-butyl isatins, as well as the corresponding terminal alcohols and regioisomeric fluorobutyl derivatives were shown to be excellent inhibitors having different binding potencies for caspases-3 and -7. In contrast, the corresponding fluoroethyl and fluoropropyl compounds were about 100–1000 times less active. Fluorinated N-benzyl isatins as well as trifluoroalkyl and difluoroalkyl derivatives were moderate inhibitors. However, isatins bearing different alkylether groups at N-1 are very weak or not active as inhibitors of caspases-3 and -7.  相似文献   
104.
In cerebellum, 75% of all GABAA receptors contain alpha1 subunits. Here, we investigated compensatory changes in GABAA receptor subunit expression and composition in alpha1 subunit-knockout mice. In these mice the total number of cerebellar GABAA receptors was reduced by 46%. Whereas the number of receptors containing alpha6 subunits was unchanged, the total amount of alpha6 subunits was significantly elevated. RT-PCR showed no increase of alpha6 mRNA levels, arguing against increased biosynthesis of these subunits. Elevated levels of alpha6 subunits in alpha1 -/- mice might thus have been caused by an increased incorporation of unassembled alpha6 subunits, replacing alpha1 subunits in alpha1alpha6betagamma2 or alpha1alpha6betadelta receptors, thus rescuing alpha6 subunits from degradation. Elevated levels of alpha3 and alpha4 subunits in the cerebellum of alpha1 -/- mice possibly can be explained similarly. Finally, a small amount of receptors containing no gamma or delta subunits was identified in these mice. Results suggest a total loss of GABAA receptors in cell types where alpha1 was the only alpha subunit expressed and a partial compensation for receptor loss in cell types containing other alpha subunits. Our results do not support a significant compensatory synthesis of other GABAA receptor subunits in the cerebellum of alpha1 -/- mice.  相似文献   
105.
Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the in vivo hip joint contact force data. The three-dimensional joint potential contact area was obtained from the anteroposterior radiograph of a subject and the actual joint contact area and pressure distribution in eight activities of daily living were calculated. During fast, normal, and slow walking, the peak pressure of moderate magnitude was located at the lateral roof of the acetabulum during mid-stance. In standing up and sitting down, and during knee bending, the peak pressures were located at the edge of the posterior horn and the magnitude of the peak pressure during sitting down was 2.8 times that of normal walking. The peak pressure was found at the lateral roof in climbing up stairs which was higher than that in going down stairs. These results can be used to rationalize rehabilitation protocols, functional restrictions after complex acetabular reconstructions, and prosthetic component wear and fatigue test set up. The same model and analysis can provide further insight to soft tissue loading and pathology such as labral injury. When the pressure distribution on the acetabulum is inverted onto the femoral head, prediction of subchondral bone collapse associated with avascular necrosis can be achieved with improved accuracy.  相似文献   
106.
The CRISPR/Cas9 system has been used for genome editing in several organisms, including higher plants. This system induces site-specific mutations in the genome based on the nucleotide sequence of engineered guide RNAs. The complex genomes of C4 grasses makes genome editing a challenge in key grass crops like maize (Zea mays), sorghum (Sorghum bicolor), Brachiaria spp., switchgrass (Panicum virgatum), and sugarcane (Saccharum spp.). Setaria viridis is a diploid C4 grass widely used as a model for these C4 crop plants. Here, an optimized CRISPR/Cas9 binary vector that exploits the non-homologous end joining (NHEJ) system was used to knockout a green fluorescent protein (gfp) transgene in S. viridis accession A10.1. Transformation of embryogenic callus by A. tumefaciens generated ten glufosinate-ammonium resistant transgenic events. In the T0 generation, 60% of the events were biallelic mutants in the gfp transgene with no detectable accumulation of GFP protein and without insertions or deletions in predicted off-target sites. The gfp mutations generated by CRISPR/Cas9 were stable and displayed Mendelian segregation in the T1 generation. Altogether, the system described here is a highly efficient genome editing system for S. viridis, an important model plant for functional genomics studies in C4 grasses. Also, this system is a potential tool for improvement of agronomic traits in C4 crop plants with complex genomes.  相似文献   
107.
108.
The main steps in the biosynthesis of complex secondary metabolites such as the antibiotic kirromycin are catalyzed by modular polyketide synthases (PKS) and/or nonribosomal peptide synthetases (NRPS). During antibiotic assembly, the biosynthetic intermediates are attached to carrier protein domains of these megaenzymes via a phosphopantetheinyl arm. This functional group of the carrier proteins is attached post-translationally by a phosphopantetheinyl transferase (PPTase). No experimental evidence exists about how such an activation of the carrier proteins of the kirromycin PKS/NRPS is accomplished. Here we report on the characterization of the PPTase KirP, which is encoded by a gene located in the kirromycin biosynthetic gene cluster. An inactivation of the kirP gene resulted in a 90% decrease in kirromycin production, indicating a substantial role for KirP in the biosynthesis of the antibiotic. In enzymatic assays, KirP was able to activate both acyl carrier protein and petidyl carrier domains of the kirromycin PKS/NRPS. In addition to coenzyme A (CoA), which is the natural substrate of KirP, the enzyme was able to transfer acyl-phosphopantetheinyl groups to the apo forms of the carrier proteins. Thus, KirP is very flexible in terms of both CoA substrate and carrier protein specificity. Our results indicate that KirP is the main PPTases that activates the carrier proteins in kirromycin biosynthesis.  相似文献   
109.
110.
The furcocystocercous cercariae of the digenetic trematode, Proterometra macrostoma , possess a tail chamber into which their distome body withdraws prior to emergence from their snail intermediate host. The process of distome retraction and the conditions that trigger it in this species are not clear. The objectives of the present study were (1) to describe the retraction process in P. macrostoma; (2) to assess whether osmolality affects cercarial retraction; (3) to evaluate the effect of selected ions on retraction; and (4) to compare the swimming effectiveness of naturally (?= in vivo) retracted versus in vitro retracted cercariae. Retraction of the cercaria body into its tail chamber required only 2 min or less once initiated. The process began with the development of a chamber within the anterior end of the worm's tail. The chamber's lip advanced in a pulsating motion over the stationary distome. Retraction was completed with the constriction and fusion of the chamber lip once it passed over the anterior end of the distome, sealing the latter within the tail chamber. There was a significant difference in the proportions of cercariae with bodies retracted into tails, bodies not retracted, and bodies separated from tails in artificial pond water (APW) versus artificial snail water (ASW). A greater number of cercariae withdrew into their tail chambers in ASW (59/124; 47.6%) than in APW (21/124; 16.9%). In APW, more bodies separated from their tails (24/124; 19.4%) than in ASW (3/124; 2.4%). In both solutions (APW: 63.7% = 79/124; ASW: 50% = 62/124), a majority of cercariae never retracted. In APW, 76.2% of distomes retracting into their tails did so within the first 5 min compared to only 30.5% in ASW. There was no significant difference in the proportions of cercariae with bodies retracted into tails, bodies not retracted, and bodies separated from tails based on isosmotic replacement of individual ions, i.e., Na(+), K(+), Ca(++), or Mg(++), in ASW with Li(+). There was also no significant difference in the vertical swimming burst distance in cercariae whose bodies were initially retracted into their tails in vitro versus in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号