首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   19篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   14篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   13篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   9篇
  2004年   13篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   11篇
  1998年   13篇
  1997年   3篇
  1996年   8篇
  1994年   5篇
  1993年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1970年   3篇
排序方式: 共有211条查询结果,搜索用时 625 毫秒
131.
IntroductionStrategies for biological repair and regeneration of the intervertebral disc (IVD) by cell and tissue engineering are promising, but few have made it into a clinical setting. Recombinant human bone morphogenetic protein 7 (rhBMP-7) has been shown to stimulate matrix production by IVD cells in vitro and in vivo in animal models of induced IVD degeneration. The aim of this study was to determine the most effective dose of an intradiscal injection of rhBMP-7 in a spontaneous canine IVD degeneration model for translation into clinical application for patients with low back pain.MethodsCanine nucleus pulposus cells (NPCs) were cultured with rhBMP-7 to assess the anabolic effect of rhBMP-7 in vitro, and samples were evaluated for glycosaminoglycan (GAG) and DNA content, histology, and matrix-related gene expression. Three different dosages of rhBMP-7 (2.5 μg, 25 μg, and 250 μg) were injected in vivo into early degenerated IVDs of canines, which were followed up for six months by magnetic resonance imaging (T2-weighted images, T1rho and T2 maps). Post-mortem, the effects of rhBMP-7 were determined by radiography, computed tomography, and macroscopy, and by histological, biochemical (GAG, DNA, and collagen), and biomolecular analyses of IVD tissue.ResultsIn vitro, rhBMP-7 stimulated matrix production of canine NPCs as GAG deposition was enhanced, DNA content was maintained, and gene expression levels of ACAN and COL2A1 were significantly upregulated. Despite the wide dose range of rhBMP-7 (2.5 to 250 μg) administered in vivo, no regenerative effects were observed at the IVD level. Instead, extensive extradiscal bone formation was noticed after intradiscal injection of 25 μg and 250 μg of rhBMP-7.ConclusionsAn intradiscal bolus injection of 2.5 μg, 25 μg, and 250 μg rhBMP-7 showed no regenerative effects in a spontaneous canine IVD degeneration model. In contrast, intradiscal injection of 250 μg rhBMP-7, and to a lesser extent 25 μg rhBMP-7, resulted in extensive extradiscal bone formation, indicating that a bolus injection of rhBMP-7 alone cannot be used for treatment of IVD degeneration in human or canine patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0625-2) contains supplementary material, which is available to authorized users.  相似文献   
132.
  相似文献   
133.
134.
135.
IntroductionPrevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence.MethodsProtein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA.ResultsFor subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed that the induction of pro-inflammatory cytokines by TLR ligands (R837, ssRNA and ODN2395) was greatly impaired in CaSki and HeLa than C33A cells.ConclusionsIn conclusion, prednisolone and TLR antagonist (hydroxychloroquine) may down-regulate protein levels of TLR7 and TLR9 in lupus patients, thereby decreasing the innate immune response against HPV infection. Upon infection, HPV further down-regulate TLR7 and 9 levels for viral persistence. Furthermore, reduction of nucleic acid-sensing TLRs 7, 8 and 9 in carcinogenic HPVs ensures that the expression of inducible pro-inflammatory cytokines is minimized to prevent the expression of antiviral ISGs (ISG15 and Mx-1) on a biologically relevant antiviral response.  相似文献   
136.

Background

The genome sequence and a high-density SNP map are now available for the chicken and can be used to identify genetic markers for use in marker-assisted selection (MAS). Effective MAS requires high linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), and sustained marker-QTL LD over generations. This study used data from a 3,000 SNP panel to assess the level and consistency of LD between single nucleotide polymorphisms (SNPs) over consecutive years in two egg-layer chicken lines, and analyzed one line by two methods (SNP-wise association and genome-wise Bayesian analysis) to identify markers associated with egg-quality and egg-production phenotypes.

Results

The LD between markers pairs was high at short distances (r2 > 0.2 at < 2 Mb) and remained high after one generation (correlations of 0.80 to 0.92 at < 5 Mb) in both lines. Single- and 3-SNP regression analyses using a mixed model with SNP as fixed effect resulted in 159 and 76 significant tests (P < 0.01), respectively, across 12 traits. A Bayesian analysis called BayesB, that fits all SNPs simultaneously as random effects and uses model averaging procedures, identified 33 SNPs that were included in the model >20% of the time (φ > 0.2) and an additional ten 3-SNP windows that had a sum of φ greater than 0.35. Generally, SNPs included in the Bayesian model also had a small P-value in the 1-SNP analyses.

Conclusion

High LD correlations between markers at short distances across two generations indicate that such markers will retain high LD with linked QTL and be effective for MAS. The different association analysis methods used provided consistent results. Multiple single SNPs and 3-SNP windows were significantly associated with egg-related traits, providing genomic positions of QTL that can be useful for both MAS and to identify causal mutations.
  相似文献   
137.
Begomoviruses (family Geminiviridae) cause major losses to crops throughout the tropical regions of the world. Begomoviruses originating from the New World (NW) and the Old World (OW) are genetically distinct. Whereas the majority of OW begomoviruses have monopartite genomes and whereas most of these associate with a class of symptom-modulating satellites (known as betasatellites), the genomes of NW begomoviruses are exclusively bipartite and do not associate with satellites. Here, we show for the first time that a betasatellite (cotton leaf curl Multan betasatellite [CLCuMuB]) associated with a serious disease of cotton across southern Asia is capable of interacting with a NW begomovirus. In the presence of CLCuMuB, the symptoms of the NW cabbage leaf curl virus (CbLCuV) are enhanced in Nicotiana benthamiana. However, CbLCuV was unable to interact with a second betasatellite, chili leaf curl betasatellite. Although CbLCuV can transreplicate CLCuMuB, satellite accumulation levels in plants were low. However, progeny CLCuMuB isolated after just one round of infection with CbLCuV contained numerous mutations. Reinoculation of one such progeny CLCuMuB with CbLCuV to N. benthamiana yielded infections with significantly higher satellite DNA levels. This suggests that betasatellites can rapidly adapt for efficient transreplication by a new helper begomovirus, including begomoviruses originating from the NW. Although the precise mechanism of transreplication of betasatellites by begomoviruses remains unknown, an analysis of betasatellite mutants suggests that the sequence(s) required for maintenance of CLCuMuB by one of its cognate begomoviruses (cotton leaf curl Rajasthan virus) differs from the sequences required for maintenance by CbLCuV. The significance of these findings and, particularly, the threat that betasatellites pose to agriculture in the NW, are discussed.Viruses of the family Geminiviridae are distinct in having genomes of circular, single-stranded DNA (ssDNA) contained within twinned quasi-isometric (“geminate”) virions from which they derive their name. Geminiviruses are divided into four genera based on the organization of their genomes, biological properties, type of insect vector (either whitefly, leafhopper, or treehopper), and host range (either mono- or dicotyledonous hosts) (37). The genus Begomovirus contains the vast majority of the identified geminivirus species, and these are transmitted exclusively by the whitefly Bemisia tabaci (Gennadius) to dicotyledonous plants. All begomoviruses native to the New World (NW) and a small number originating from the Old World (OW) have bipartite genomes (with components known as DNA-A and DNA-B). The majority of the OW begomoviruses have genomes consisting of a single component homologous to the DNA-A component of the bipartite viruses. Begomoviruses from the NW and OW are genetically distinct. They segregate separately in phylogenetic analyses, and the OW viruses show a greater genetic diversity and have an additional, absolutely conserved gene (known as V2 for the monopartite and AV2 for the bipartite viruses) that is absent in the NW begomoviruses.The global trade in agricultural products is leading to the spread of many viruses. The prime example here is tomato yellow leaf curl virus. This monopartite begomovirus has its origins in the Middle East/Mediterranean region but has been inadvertently introduced to the NW, with serious consequences for tomato production across the southern United States (24, 26). Similarly, the NW begomovirus squash leaf curl virus from the southwestern United States has been introduced into the Middle East (2, 20).The majority of OW monopartite begomoviruses are associated with additional ssDNA molecules. The first evidence for this came with the report by Dry et al. (14) of an ssDNA satellite associated with tomato leaf curl virus (ToLCV) occurring in Australia. This molecule was later shown to be a defective (truncated) version of a much larger group of subviral components associated with begomoviruses that are now known collectively as betasatellites (6). Betasatellites are approximately half the size of a begomovirus component (∼1,360 nucleotides [nt]) and are required by the helper begomovirus for efficient infection of some hosts (9, 30, 31). Betasatellites have been shown to be associated with an increasing number of diseases caused by begomoviruses, including many of the most significant, economically damaging diseases occurring in the OW. The most noteworthy of these diseases is cotton leaf curl disease (CLCuD). CLCuD was epidemic during the 1990s across Pakistan and continues to be so in northern India. The disease is caused by a complex consisting of representatives of at least seven distinct begomovirus species and a specific betasatellite (23).Betasatellites have a highly conserved structure although their sequences are highly diverse, with distinct species showing as little as 50% sequence identity (6, 11, 42). They contain a single coding sequence (known as βC1), a region of sequence rich in adenine, and a ∼150-nt region, known as the satellite conserved region (SCR), that is highly conserved between all betasatellites. The SCR contains a predicted hairpin structure that contains within the loop a nonanucleotide sequence (TAATATTAC) that for geminiviruses marks the origin of virion-strand DNA replication. The βC1 gene is a pathogenicity determinant (27, 28, 33) and encodes all satellite functions identified so far, including suppression of RNA-mediated host defense (13) and possibly a role in virus movement (29). For many of the monopartite begomoviruses, the betasatellite is essential for inducing typical disease symptoms in the hosts from which they were isolated (6, 9, 30). However, recently some viruses with less dependence on interaction with their betasatellites have been identified (6).When betasatellites were first identified, their ability to interact with NW begomoviruses was investigated, but no evidence for interaction was found (R.W. Briddon, unpublished results). Here, we report a positive interaction between a betasatellite and the NW cabbage leaf curl virus (CbLCuV). We show that the interaction between the betasatellite and this NW begomovirus leads to rapid sequence changes in the satellite, which enhances its interaction with the virus.  相似文献   
138.

Background  

Chondrosarcoma responds poorly to adjuvant therapy and new, clinically relevant animal models are required to test targeted therapy.  相似文献   
139.
A mathematical approach was developed to model and optimize selection on multiple known quantitative trait loci (QTL) and polygenic estimated breeding values in order to maximize a weighted sum of responses to selection over multiple generations. The model allows for linkage between QTL with multiple alleles and arbitrary genetic effects, including dominance, epistasis, and gametic imprinting. Gametic phase disequilibrium between the QTL and between the QTL and polygenes is modeled but polygenic variance is assumed constant. Breeding programs with discrete generations, differential selection of males and females and random mating of selected parents are modeled. Polygenic EBV obtained from best linear unbiased prediction models can be accommodated. The problem was formulated as a multiple-stage optimal control problem and an iterative approach was developed for its solution. The method can be used to develop and evaluate optimal strategies for selection on multiple QTL for a wide range of situations and genetic models.  相似文献   
140.
Particle bombardment and the genetic enhancement of crops: myths and realities   总被引:14,自引:0,他引:14  
DNA transfer by particle bombardment makes use of physical processes to achieve the transformation of crop plants. There is no dependence on bacteria, so the limitations inherent in organisms such as Agrobacterium tumefaciens do not apply. The absence of biological constraints, at least until DNA has entered the plant cell, means that particle bombardment is a versatile and effective transformation method, not limited by cell type, species or genotype. There are no intrinsic vector requirements so transgenes of any size and arrangement can be introduced, and multiple gene cotransformation is straightforward. The perceived disadvantages of particle bombardment compared to Agrobacterium-mediated transformation, i.e. the tendency to generate large transgene arrays containing rearranged and broken transgene copies, are not borne out by the recent detailed structural analysis of transgene loci produced by each of the methods. There is also little evidence for major differences in the levels of transgene instability and silencing when these transformation methods are compared in agriculturally important cereals and legumes, and other non-model systems. Indeed, a major advantage of particle bombardment is that the delivered DNA can be manipulated to influence the quality and structure of the resultant transgene loci. This has been demonstrated in recently reported strategies that favor the recovery of transgenic plants containing intact, single-copy integration events, and demonstrating high-level transgene expression. At the current time, particle bombardment is the most efficient way to achieve plastid transformation in plants and is the only method so far used to achieve mitochondrial transformation. In this review, we discuss recent data highlighting the positive impact of particle bombardment on the genetic transformation of plants, focusing on the fate of exogenous DNA, its organization and its expression in the plant cell. We also discuss some of the most important applications of this technology including the deployment of transgenic plants under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号