首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   64篇
  2024年   1篇
  2023年   9篇
  2022年   26篇
  2021年   64篇
  2020年   29篇
  2019年   28篇
  2018年   30篇
  2017年   30篇
  2016年   49篇
  2015年   76篇
  2014年   78篇
  2013年   77篇
  2012年   91篇
  2011年   95篇
  2010年   55篇
  2009年   48篇
  2008年   43篇
  2007年   59篇
  2006年   35篇
  2005年   38篇
  2004年   40篇
  2003年   39篇
  2002年   28篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   11篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1973年   2篇
  1968年   2篇
排序方式: 共有1146条查询结果,搜索用时 31 毫秒
951.
952.

Background

The current standard care therapy for hepatitis C virus (HCV) infection consists of two regimes, namely interferon-based and interferon-free treatments. The treatment through the combination of ribavirin and pegylated interferon is expensive, only mildly effective, and is associated with severe side effects. In 2011, two direct-acting antiviral (DAA) drugs, boceprevir and telaprevir, were licensed that have shown enhanced sustained virologic response (SVR) in phase III clinical trial, however, these interferon-free treatments are more sensitive to HCV genotype 1 infection. The variable nature of HCV, and the limited number of inhibitors developed thus aim in expanding the repertoire of available drug targets, resulting in targeting the virus assembly therapeutically.

Aim

We conducted this study to predict the 3D structure of the p7 protein from the HCV genotypes 3 and 4. Approximately 63 amino acid residues encoded in HCV render this channel sensitive to inhibitors, making p7 a promising target for novel therapies. HCV p7 protein forms a small membrane known as viroporin, and is essential for effective self-assembly of large channels that conduct cation assembly and discharge infectious virion particles.

Method

In this study, we screened drugs and flavonoids known to disrupt translation and production of HCV proteins, targeted against the active site of p7 residues of HCV genotype 3 (GT3) (isolatek3a) and HCV genotype 4a (GT4) (isolateED43). Furthermore, we conducted a quantitative structure–activity relationship and docking interaction study.

Results

The drug NB-DNJ formed the highest number of hydrogen bond interactions with both modeled p7 proteins with high interaction energy, followed by BIT225. A flavonoid screen demonstrated that Epigallocatechin gallate (EGCG), nobiletin, and quercetin, have more binding modes in GT3 than in GT4. Thus, the predicted p7 protein molecule of HCV from GT3 and GT4 provides a general avenue to target structure-based antiviral compounds.

Conclusions

We hypothesize that the inhibitors of viral p7 identified in this screen may be a new class of potent agents, but further confirmation in vitro and in vivo is essential. This structure-guided drug design for both GT3 and GT4 can lead to the identification of drug-like natural compounds, confirming p7 as a new target in the rapidly increasing era of HCV.  相似文献   
953.
954.
Heterogeneity in clinical manifestations is a well-known feature in Long QT Syndrome (LQTS). The extent of this phenomenon became evident in families wherein both symptomatic and asymptomatic family members are reported. The study hence warrants genetic testing and/or screening of family members of LQTS probands for risk stratification and prediction.Of the 46 families screened, 18 probands revealed novel variations/compound heterozygosity in the gene/s screened. Families 1–4 revealed probands carrying novel variations in KCNQ1 gene along with compound heterozygosity of risk genotypes of the SCN5A, KCNE1 and NPPA gene/s polymorphisms screened. It was also observed that families- 5, 6 and 7 were typical cases of “anticipation” in which both mother and child were diagnosed with congenital LQTS (cLQTS). Families- 16 and 17 represented aLQTS probands with variations in IKs and INa encoding genes. First degree relatives (FDRs) carrying the same haplotype as the proband were also identified which may help in predictive testing and management of LQTS. Most of the probands exhibiting a family history were found to be genetic compounds which clearly points to the role of cardiac genes and their modifiers in a recessive fashion in LQTS manifestation.  相似文献   
955.
We have used fluo3-loaded mouse pancreatic acinar cells to investigate the relationshipbetween Ca2+ mobilization andintracellular pH (pHi). TheCa2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in theluminal cell pole followed by spreading of the Ca2+ signal toward the basolateralside with a mean speed of 16.1 ± 0.3 µm/s. In the presence of anacidic pHi, achieved by blockade of theNa+/H+exchanger or by incubation of the cells in aNa+-free buffer, a slowerspreading of ACh-evoked Ca2+ waveswas observed (7.2 ± 0.6 µm/s and 7.5 ± 0.3 µm/s,respectively). The effects of cytosolic acidification on thepropagation rate of ACh-evokedCa2+ waves were largely reversibleand were not dependent on the presence of extracellularCa2+. A reduction in the spreadingspeed of Ca2+ waves could also beobserved by inhibition of the vacuolarH+-ATPase with bafilomycinA1 (11.1 ± 0.6 µm/s), whichdid not lead to cytosolic acidification. In contrast, inhibition of theendoplasmic reticulum Ca2+-ATPaseby 2,5-di-tert-butylhydroquinone ledto faster spreading of the ACh-evokedCa2+ signals (25.6 ± 1.8 µm/s), which was also reduced by cytosolic acidification or treatmentof the cells with bafilomycin A1.Cytosolic alkalinization had no effect on the spreading speed of theCa2+ signals. The data suggestthat the propagation rate of ACh-induced Ca2+ waves is decreased byinhibition of Ca2+ release fromintracellular stores due to cytosolic acidification or toCa2+ pool alkalinizationand/or to a decrease in the proton gradient directed from theinositol 1,4,5-trisphosphate-sensitiveCa2+ pool to the cytosol.

  相似文献   
956.
Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.  相似文献   
957.
Dengue has become endemic in Pakistan with annual recurrence. A sudden increase in the dengue cases was reported from Rawalpindi in 2016, while an outbreak occurred for the first time in Peshawar in 2017. Therefore, a multi-center study was carried out to determine the circulating dengue virus (DENV) serotypes and Chikungunya virus (CHIKV) co-infection in Lahore, Rawalpindi, and Peshawar cities in 2016–18. A hospital-based cross-sectional study was carried out in Lahore and Rawalpindi in 2016–18, while a community-based study was carried out in Peshawar in 2017. The study participants were tested for dengue NS1 antigen using an immunochromatographic device while anti-dengue IgM/IgG antibodies were detected by indirect ELISA. All NS1 positive samples were used for DENV serotyping using multiplex real-time PCR assay. Additionally, dengue samples were tested for CHIKV co-infection using IgM/IgG ELISA. A total of 6291 samples were collected among which 8.11% were NS1 positive while 2.5% were PCR positive. DENV-2 was the most common serotype (75.5%) detected, followed by DENV-1 in 16.1%, DENV-3 in 3.9% and DENV-4 in 0.7% while DENV-1 and DENV-4 concurrent infections were detected in 3.9% samples. DENV-1 was the predominant serotype (62.5%) detected from Lahore and Rawalpindi, while DENV-2 was the only serotype detected from Peshawar. Comorbidities resulted in a significant increase (p-value<0.001) in the duration of hospital stay of the patients. Type 2 diabetes mellitus substantially (p-value = 0.004) contributed to the severity of the disease. Among a total of 590 dengue positive samples, 11.8% were also positive for CHIKV co-infection. Co-circulation of multiple DENV serotypes and CHIKV infection in Pakistan is a worrisome situation demanding the urgent attention of the public health experts to strengthen vector surveillance.  相似文献   
958.
The human calcitonin receptor (hCTR) is expressed in polarizedcells of the kidney, bone, and nervous system. In the kidney, hCTRs arefound in cells of the distal nephron to which blood-borne calcitoninhas access only at the basolateral surface. We expressed hCTR subtypes1 and 2 in Madin-Darby canine kidney (MDCK) cells to establish a cellmodel useful for delineating the molecular mechanisms underlying hCTRpolarity. Selective cell surface incubation demonstrated functionalpolarity of hCTRs by equilibrium binding or cross-linking ofradioiodinated salmon calcitonin(125I-sCT) and cAMP accumulationstimulated by sCT. We estimated that at the steady state there are40-fold more hCTRs on the basolateral than on the apical side.Domain-selective cell surface biotinylation followed by immunoblottingof streptavidin-agarose-fractionated biotinylated glycoproteinsindependently confirmed the polarized distribution of FLAGepitope-tagged hCTR-2 in the basolateral domain. Confocal microscopy ofimmunostained receptors revealed that hCTRs are concentrated on alateral subdomain of the basolateral membrane. Cell surface arrivalassay of newly formed receptors demonstrated that direct delivery tothe basolateral domain is the mechanism by which hCTRs becomepolarized. Measurement of receptor turnover on the basolateral surfaceshowed that retention contributes to hCTR distribution at the steadystate.

  相似文献   
959.
We have compared the effects of norepinephrine, forskolin, and dibutyryl cyclic AMP (Bt2cAMP) on the regulation of the cytosolic enzyme glycerol phosphate dehydrogenase (GPDH) in the C6 rat glioma cell line. Forskolin and Bt2cAMP elicit a dose-dependent increase in the levels of the enzyme that was, however, unaffected by norepinephrine. The half-maximal effect of forskolin was obtained at 7-8 microM, and the effect was maximal at 30 microM. Dexamethasone at a 50 nM concentration produced a two- to sixfold induction of GPDH after 48 h. The combination of dexamethasone with forskolin or Bt2cAMP leads to an elevation in GPDH levels that is higher than that produced by one of the compounds alone. This potentiation is found when both agents are added together with or after the glucocorticoid. The increase in uninduced and dexamethasone-induced GPDH activity was blocked by cycloheximide and actinomycin D, indicating that de novo protein and RNA synthesis are required. The activity of cytosolic lactate dehydrogenase activity did not change after incubation with dexamethasone, but increased with forskolin or Bt2cAMP.  相似文献   
960.
Summary A new selection method based on the use of chlorsulfuron (CS) resistance as the selection marker for protoplast fusion in industrial yeast has been introduced using the system of protoplast fusion. A petite mutant of a spontaneously CS-resistant distiller's Saccharomyces cerevisiae strain and a wild-type CS-sensitive strain of the osmotolerant yeast Zygosaccharomyces mellis were fused in order to obtain a distiller's yeast suitable for fermentations on concentrated molasses. Fusion products were isolated as large colonies on minimal glycerol agar with 0.5 mg ml–1 of the herbicide Glean (75% CS). Following prolonged cultivation on molasses, stable hybrid subxlones were obtained. Offprint requests to: F. Cvrková  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号