全文获取类型
收费全文 | 1089篇 |
免费 | 63篇 |
专业分类
1152篇 |
出版年
2024年 | 3篇 |
2023年 | 10篇 |
2022年 | 25篇 |
2021年 | 62篇 |
2020年 | 29篇 |
2019年 | 27篇 |
2018年 | 30篇 |
2017年 | 30篇 |
2016年 | 48篇 |
2015年 | 76篇 |
2014年 | 77篇 |
2013年 | 78篇 |
2012年 | 89篇 |
2011年 | 94篇 |
2010年 | 53篇 |
2009年 | 45篇 |
2008年 | 47篇 |
2007年 | 59篇 |
2006年 | 36篇 |
2005年 | 40篇 |
2004年 | 41篇 |
2003年 | 36篇 |
2002年 | 32篇 |
2001年 | 10篇 |
2000年 | 8篇 |
1999年 | 8篇 |
1998年 | 11篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1980年 | 3篇 |
1975年 | 1篇 |
1973年 | 2篇 |
排序方式: 共有1152条查询结果,搜索用时 31 毫秒
71.
Naseer Mohammad Ankur Dahayat Manorama Yadav Fatima Shirin S. A. Ansari 《Physiology and Molecular Biology of Plants》2018,24(4):655-663
Litsea glutinosa (Lour.), one of the most dwindling forest species in central India, is represented by highly fragmented populations that have been drastically reduced for the last 40 years, promulgating government ban on its extraction. For the first time with the help of ISSR markers, we investigated genetic variation and population structure of L. glutinosa in central Indian states. A total of 84 genotypes from 10 populations covering the entire potential pockets of the species in central India were collected. The percentage of polymorphic loci ranged from 44.79% (Rewa) to 94.79% (Marvahi) with a mean value of 70.10%. The sampled populations harbored high level of genetic diversity (mean h?=?0.294 and I?=?0.424) that was partitioned more within populations (73%) than between populations (27%). Bayesian structure analysis revealed the existence of four admixed genetic pools in L. glutinosa. The unsustainable extraction rather than genetic factor seems to be responsible for population fragmentation and dwindling status of this species. The dioecious nature of the species advocates an in-situ conservation to be the most suited approach for which Chhindwara, Jagdalpur, Balaghat and Jabalpur populations are appropriate. 相似文献
72.
Botos I Melnikov EE Cherry S Tropea JE Khalatova AG Rasulova F Dauter Z Maurizi MR Rotanova TV Wlodawer A Gustchina A 《The Journal of biological chemistry》2004,279(9):8140-8148
ATP-dependent Lon protease degrades specific short-lived regulatory proteins as well as defective and abnormal proteins in the cell. The crystal structure of the proteolytic domain (P domain) of the Escherichia coli Lon has been solved by single-wavelength anomalous dispersion and refined at 1.75-A resolution. The P domain was obtained by chymotrypsin digestion of the full-length, proteolytically inactive Lon mutant (S679A) or by expression of a recombinant construct encoding only this domain. The P domain has a unique fold and assembles into hexameric rings that likely mimic the oligomerization state of the holoenzyme. The hexamer is dome-shaped, with the six N termini oriented toward the narrower ring surface, which is thus identified as the interface with the ATPase domain in full-length Lon. The catalytic sites lie in a shallow concavity on the wider distal surface of the hexameric ring and are connected to the proximal surface by a narrow axial channel with a diameter of approximately 18 A. Within the active site, the proximity of Lys(722) to the side chain of the mutated Ala(679) and the absence of other potential catalytic side chains establish that Lon employs a Ser(679)-Lys(722) dyad for catalysis. Alignment of the P domain catalytic pocket with those of several Ser-Lys dyad peptide hydrolases provides a model of substrate binding, suggesting that polypeptides are oriented in the Lon active site to allow nucleophilic attack by the serine hydroxyl on the si-face of the peptide bond. 相似文献
73.
Background
Involvement of conservative molecular modules and cellular mechanisms in the widely diversified processes of eukaryotic cell morphogenesis leads to the intriguing question: how do similar proteins contribute to dissimilar morphogenetic outputs. Formins (FH2 proteins) play a central part in the control of actin organization and dynamics, providing a good example of evolutionarily versatile use of a conserved protein domain in the context of a variety of lineage-specific structural and signalling interactions. 相似文献74.
Lagaud G Karicheti V Knot HJ Christ GJ Laher I 《American journal of physiology. Heart and circulatory physiology》2002,283(6):H2177-H2186
The effects of two structurally distinct inhibitors of gap junction communication were studied by using three different forms of vasoconstriction in pressurized rat middle cerebral arteries. The sensitivity of myogenic tone (at 60 mmHg), vasopressin-induced tone (10 nM, at 20 mmHg), and depolarizing solution-induced tone (80 mM K(+), at 20 mmHg) to inhibition by heptanol (1.0 microM to 3.0 mM) or 18alpha-glycyrrhetinic acid (18alpha-GA, 1.0 to 50 microM) were determined. Pressure-induced myogenic tone was inhibited by heptanol (IC(50) = 0.75 +/- 0.09 mM) and 18alpha-GA ( approximately 30 microM). Vasopressin-induced vasoconstriction was also inhibited by heptanol (IC(50) = 0.4 +/- 0.3 mM) and 18alpha-GA (>1 microM). Depolarizing solution-induced vasoconstriction was less sensitive to inhibition by heptanol compared to vasopressin (P < 0.01) or pressure-induced constriction (P < 0.05). However, 18alpha-GA did not inhibit depolarization-induced constriction. Sharp microelectrode experiments on isolated arteries revealed stable membrane potentials, with no detectable effect of heptanol (1 mM) or 18alpha-GA (20-30 microM) on the average membrane potential at 20 mmHg. However, approximately 20% of impaled cells (5 of 28) exhibited uncharacteristic oscillations in membrane potential after pharmacological uncoupling. At 60 mmHg a approximately 7- to 9-mV hyperpolarization and corresponding vasodilation (approximately 50%) was observed, and the frequency of membrane potential oscillations doubled (9 of 23 cells). These data indicate that gap junctions play an important role in the maintenance and modulation of membrane potential and tone in cerebral resistance arteries. 相似文献
75.
Kanwal Rehman Fiza Fatima Iqra Waheed Muhammad Sajid Hamid Akash 《Journal of cellular biochemistry》2018,119(1):157-184
Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal‐induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal‐contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal‐contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. 相似文献
76.
Tamagawa E Bai N Morimoto K Gray C Mui T Yatera K Zhang X Xing L Li Y Laher I Sin DD Man SF van Eeden SF 《American journal of physiology. Lung cellular and molecular physiology》2008,295(1):L79-L85
Epidemiologic and animal studies have shown that exposure to particulate matter air pollution (PM) is a risk factor for the development of atherosclerosis. Whether PM-induced lung and systemic inflammation is involved in this process is not clear. We hypothesized that PM exposure causes lung and systemic inflammation, which in turn leads to vascular endothelial dysfunction, a key step in the initiation and progression of atherosclerosis. New Zealand White rabbits were exposed for 5 days (acute, total dose 8 mg) and 4 wk (chronic, total dose 16 mg) to either PM smaller than 10 mum (PM(10)) or saline intratracheally. Lung inflammation was quantified by morphometry; systemic inflammation was assessed by white blood cell and platelet counts and serum interleukin (IL)-6, nitric oxide, and endothelin levels. Endothelial dysfunction was assessed by vascular response to acetylcholine (ACh) and sodium nitroprusside (SNP). PM(10) exposure increased lung macrophages (P<0.02), macrophages containing particles (P<0.001), and activated macrophages (P<0.006). PM(10) increased serum IL-6 levels in the first 2 wk of exposure (P<0.05) but not in weeks 3 or 4. PM(10) exposure reduced ACh-related relaxation of the carotid artery with both acute and chronic exposure, with no effect on SNP-induced vasodilatation. Serum IL-6 levels correlated with macrophages containing particles (P=0.043) and ACh-induced vasodilatation (P=0.014 at week 1, P=0.021 at week 2). Exposure to PM(10) caused lung and systemic inflammation that were both associated with vascular endothelial dysfunction. This suggests that PM-induced lung and systemic inflammatory responses contribute to the adverse vascular events associated with exposure to air pollution. 相似文献
77.
78.
Mateescu B Batista L Cardon M Gruosso T de Feraudy Y Mariani O Nicolas A Meyniel JP Cottu P Sastre-Garau X Mechta-Grigoriou F 《Nature medicine》2011,17(12):1627-1635
Although there is evidence that redox regulation has an essential role in malignancies, its impact on tumor prognosis remains unclear. Here we show crosstalk between oxidative stress and the miR-200 family of microRNAs that affects tumorigenesis and chemosensitivity. miR-141 and miR-200a target p38α and modulate the oxidative stress response. Enhanced expression of these microRNAs mimics p38α deficiency and increases tumor growth in mouse models, but it also improves the response to chemotherapeutic agents. High-grade human ovarian adenocarcinomas that accumulate miR-200a have low concentrations of p38α and an associated oxidative stress signature. The miR200a-dependent stress signature correlates with improved survival of patients in response to treatment. Therefore, the role of miR-200a in stress could be a predictive marker for clinical outcome in ovarian cancer. In addition, although oxidative stress promotes tumor growth, it also sensitizes tumors to treatment, which could account for the limited success of antioxidants in clinical trials. 相似文献
79.
The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis 总被引:2,自引:0,他引:2
Nilsson EC Storm RJ Bauer J Johansson SM Lookene A Ångström J Hedenström M Eriksson TL Frängsmyr L Rinaldi S Willison HJ Pedrosa Domellöf F Stehle T Arnberg N 《Nature medicine》2011,17(1):105-109
Adenovirus type 37 (Ad37) is a leading cause of epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular disease. Whereas most other adenoviruses infect cells by engaging CD46 or the coxsackie and adenovirus receptor (CAR), Ad37 binds previously unknown sialic acid-containing cell surface molecules. By glycan array screening, we show here that the receptor-recognizing knob domain of the Ad37 fiber protein specifically binds a branched hexasaccharide that is present in the GD1a ganglioside and that features two terminal sialic acids. Soluble GD1a glycan and GD1a-binding antibodies efficiently prevented Ad37 virions from binding and infecting corneal cells. Unexpectedly, the receptor is constituted by one or more glycoproteins containing the GD1a glycan motif rather than the ganglioside itself, as shown by binding, infection and flow cytometry experiments. Molecular modeling, nuclear magnetic resonance and X-ray crystallography reveal that the two terminal sialic acids dock into two of three previously established sialic acid-binding sites in the trimeric Ad37 knob. Surface plasmon resonance analysis shows that the knob-GD1a glycan interaction has high affinity. Our findings therefore form a basis for the design and development of sialic acid-containing antiviral drugs for topical treatment of EKC. 相似文献