首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1889篇
  免费   148篇
  国内免费   2篇
  2039篇
  2024年   8篇
  2023年   17篇
  2022年   38篇
  2021年   87篇
  2020年   44篇
  2019年   46篇
  2018年   50篇
  2017年   57篇
  2016年   87篇
  2015年   125篇
  2014年   119篇
  2013年   110篇
  2012年   138篇
  2011年   134篇
  2010年   93篇
  2009年   75篇
  2008年   77篇
  2007年   85篇
  2006年   53篇
  2005年   73篇
  2004年   55篇
  2003年   51篇
  2002年   44篇
  2001年   30篇
  2000年   31篇
  1999年   28篇
  1998年   18篇
  1997年   13篇
  1996年   14篇
  1995年   11篇
  1994年   11篇
  1993年   13篇
  1992年   22篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   15篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1981年   6篇
  1980年   5篇
  1977年   5篇
  1974年   4篇
  1973年   9篇
  1935年   3篇
  1925年   3篇
  1923年   3篇
排序方式: 共有2039条查询结果,搜索用时 0 毫秒
101.

Background

In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells.

Method

Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry.

Results

The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 105 and (0.85 ± 0.11) × 105, respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC.

Conclusion

Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-43) contains supplementary material, which is available to authorized users.  相似文献   
102.
Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal‐induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal‐contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal‐contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed.  相似文献   
103.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   
104.

Objective

Mortality in heart failure (AHF) remains high, especially during the first days of hospitalization. New prognostic biomarkers may help to optimize treatment. The aim of the study was to determine metabolites that have a high prognostic value.

Methods

We conducted a prospective study on a training cohort of AHF patients (n = 126) admitted in the cardiac intensive care unit and assessed survival at 30 days. Venous plasmas collected at admission were used for 1H NMRbased metabonomics analysis. Differences between plasma metabolite profiles allow determination of discriminating metabolites. A cohort of AHF patients was subsequently constituted (n = 74) to validate the findings.

Results

Lactate and cholesterol were the major discriminating metabolites predicting 30-day mortality. Mortality was increased in patients with high lactate and low total cholesterol concentrations at admission. Accuracies of lactate, cholesterol concentration and lactate to cholesterol (Lact/Chol) ratio to predict 30-day mortality were evaluated using ROC analysis. The Lact/Chol ratio provided the best accuracy with an AUC of 0.82 (P < 0.0001). The acute physiology and chronic health evaluation (APACHE) II scoring system provided an AUC of 0.76 for predicting 30-day mortality. APACHE II score, Cardiogenic shock (CS) state and Lact/Chol ratio ≥ 0.4 (cutoff value with 82% sensitivity and 64% specificity) were significant independent predictors of 30-day mortality with hazard ratios (HR) of 1.11, 4.77 and 3.59, respectively. In CS patients, the HR of 30-day mortality risk for plasma Lact/Chol ratio ≥ 0.4 was 3.26 compared to a Lact/Chol ratio of < 0.4 (P  =  0.018). The predictive power of the Lact/Chol ratio for 30-day mortality outcome was confirmed with the independent validation cohort.

Conclusion

This study identifies the plasma Lact/Chol ratio as a useful objective and simple parameter to evaluate short term prognostic and could be integrated into quantitative guidance for decision making in heart failure care.  相似文献   
105.

Background

Hen''s egg allergy ranks among the most frequent primary food allergies in children. We aimed to investigate sensitization profiles of egg allergic patients and compare in vitro IgE reactivities of eggs from ancient chicken breeds (Araucana and Maran) with those from conventional laying hen hybrids.

Methodology

Egg allergic children (n = 25) were subjected to skin prick test, double blind placebo controlled food challenge, and sensitization profiles to Gal d 1–5 were determined by allergen microarray. IgE binding and biological activity of eggs from different chicken breeds were investigated by immunoblot, ELISA, and mediator release assays.

Principal Findings

We found that Gal d 1 and Gal d 2 are generally major egg allergens, whereas Gal d 3–5 displayed high sensitization prevalence only in patients reacting to both, egg white and yolk. It seems that the onset of egg allergy is mediated by egg white allergens expanding to yolk sensitization in later stages of disease. Of note, egg white/yolk weight ratios were reduced in eggs from Auraucana and Maran chicken. As determined in IgE immunoblots and mass analysis, eggs from ancient chicken breeds did not differ in their protein composition. Similar IgE-binding was observed for all egg white preparations, while an elevated allergenicity was detected in egg yolk from Araucana chicken.

Conclusion/Significance

Our results on allergenicity and biological activity do not confirm the common assumption that aboriginal food might be less allergenic. Comprehensive diagnosis of egg allergy should distinguish between reactivity to hen''s egg white and yolk fractions to avoid unnecessary dietary restrictions to improve life quality of the allergic child and its family.  相似文献   
106.
The concept of positional information is central to our understanding of how cells determine their location in a multicellular structure and thereby their developmental fates. Nevertheless, positional information has neither been defined mathematically nor quantified in a principled way. Here we provide an information-theoretic definition in the context of developmental gene expression patterns and examine the features of expression patterns that affect positional information quantitatively. We connect positional information with the concept of positional error and develop tools to directly measure information and error from experimental data. We illustrate our framework for the case of gap gene expression patterns in the early Drosophila embryo and show how information that is distributed among only four genes is sufficient to determine developmental fates with nearly single-cell resolution. Our approach can be generalized to a variety of different model systems; procedures and examples are discussed in detail.  相似文献   
107.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   
108.
Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracellular UO(2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO(2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2) nanoparticles. In the environment, such association of UO(2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2) or transport in soils and sediments.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号