首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  56篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
21.
A molecular marker to select for freezing tolerance in Gramineae   总被引:7,自引:0,他引:7  
Summary We isolated, and expressed in Escherichia coli, a gene (Wcs120) that is strongly induced during cold acclimation of wheat. The gene product was purified and used to produce antibodies. Immunoblotting experiments with the anti-WCS120 antibody identified several cold-induced proteins named FTMs for Freezing Tolerance Markers since they are associated with the development of freezing tolerance. This protein family was found to be coordinately regulated specifically by low temperature, highly hydrophilic, stable to boiling, and to have a pI above 6.5. The accumulation kinetics during the acclimation period indicated a positive correlation with the capacity of each genotype to develop freezing tolerance. Accumulation of the proteins was higher in the freezing-tolerant genotype than in the less tolerant one. In addition, their accumulation was more pronounced in the crown and leaf tissues compared with roots, confirming a relationship to the capacity of the different tissues to develop freezing tolerance. Analysis of different species (eight monocots and four dicots) indicated that this protein family is specific for freezing-tolerant cereals. The antibody did not cross-react with any of the non-cereal species examined. The anti-FTMs antibody represents a potential tool for breeders to select for freezing tolerance traits in the Gramineae.  相似文献   
22.
23.
24.
Malondialdehyde, a product of lipid oxidation, increased graduallywhen Euglena gracilis cells were bubbled with 240 µ1.liter–1ozone (delivery rate of 1µmolO3.min–1) for 120 min.Simultaneously, the sulfhydryl group content decreased by 36%during the treatment, which was mainly due to oxidation of proteinsulfhydryl groups. The molar amount of SH groups oxidized was3 times higher than that of fatty acid oxidized, indicatingthat sulfhydryl groups were more accessible or more easily oxidizedby O3 than fatty acids. When Euglena cells were allowed to recoverunder autotrophic growth conditions following O3 treatment,viable cells were incapable of dividing during the first 5 hof the recovery period but regenerated SH groups nearly to thecontrol level. The increase of SH content during this periodpreceded the resumption of cell division and the restorationof normal growth. These results suggest that the regenerationof SH groups by Euglena cells is a part of a mechanism involvedin the repair of oxidative damage caused by ozone and is anessential step for the initiation of cell division. (Received July 20, 1987; Accepted December 14, 1987)  相似文献   
25.
A Nicotiana benthamiana transient expression system was used to express single antigen and dimeric combinations of the human rotavirus (HRV) VP7 and a truncated VP4 (VP4Δ) proteins fused with Salmonella typhimurium’s flagellin fljB subunit. Immunoblot analyses using rabbit antibodies generated against these proteins demonstrated that the constructs were successfully expressed with yields ranging from 0.85 to 31.97 μg of recombinant protein per gram of fresh leaf tissue. Expressing the single and dimeric antigens has no effect on plant growth and development except for VP7 and VP4Δ::VP7, which show mild necrotic lesions. Immunization of mice with proteins from leaves transformed with constructs bearing the fljB moiety elicited an fljB-specific humoral response. The Nicotiana benthamiana transient system is efficient to express multiple combinations of pathogen proteins and demonstrates the potential of generating a Salmonella typhimurium subunit vaccine in plants.  相似文献   
26.
The content, composition and biological activity of polysomesfrom three wheat genotypes were studied during cold acclimation.The structural integrity of the different polysome populationswas not affected by the hardening temperature. Polysomes werealso found to accumulate at higher level in cold hardened seedlingssuggesting a high protein synthesis capacity during the acclimationperiod. The in vitro translation of polysome-bound mRNAs inthe wheat germ cell-free system showed a high translation potentialof polysomes from cold hardened seedlings compared to that ofcontrol. The electrophoretic analysis of the translation productsby two-dimensional SDS-PAGE revealed the induction of severalnew mRNAs in cold hardened wheat seedlings. The presence ofthese new messengers in the polysomal fraction suggests thatnew messages have already been processed, transported and preferentiallyselected for translation by the ribosomes. The most importantchange was the induction and pronounced synthesis of four peptides[one high mol wt peptide of 200 kDa (pI 6.5) and three smallerones of 58 (pI 7.0), 48 (pI 7.1) and 48 (pI 7.2) kDa respectively]in the freezing tolerant cultivar Norstar. These specific polypeptideswere absent in the freezing sensitive cultivar Glenlea suggestingthat their induction and expression was associated with thefreezing tolerance capacity. (Received January 19, 1990; Accepted August 24, 1990)  相似文献   
27.
28.
29.
High yield isolation of mesophyll protoplasts from wheat, barley and rye   总被引:1,自引:0,他引:1  
Efficient procedures are described for high-yield isolation of mesophyll protoplasts from spring wheat ( Triticum aestivum L. cv. Glenlea), winter wheat ( Triticum aestivum L. cv. Frederick), barley ( Hordeum vulgare L. cv. Bruce) and rye ( Secale cereale L. cv. Puma). Factors such as plant age, composition of the incubation medium during isolation, purification procedures and culture medium affect protoplast yield, viability and metabolic competence, as measured by light-dependent CO2 fixation. Optimal osmolarity of the isolation medium was equivalent to 1.8 times that measured in the leaves of all plant material used. The presence of 2 m M ascorbic acid in the preincubation and isolation medium increased the yield by 50% and conserved viability and metabolic competence. The protoplasts were stable for up to 48 h without loss of either viability or of original activity of CO2 fixation, which was in the order of 100 μmol CO2 (mg chl)−1h−1.
In our MC-56 liquid medium these protoplasts regenerated cell walls within 72 h and a few divided.  相似文献   
30.
The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non‐acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22–40% increase in light‐saturated rates of CO2 assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO2 assimilation and photosynthetic electron transport, (2) the increased efficiency and light‐saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non‐photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q10) of CO2 assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17‐overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号