首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   8篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   11篇
  2013年   16篇
  2012年   10篇
  2011年   10篇
  2010年   10篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有130条查询结果,搜索用时 790 毫秒
71.
Quantitative determination by high performance liquid chromatography (HPLC) was performed for gymnodimine-A (GYM-A), a phycotoxin responsible for the contamination of Tunisian clams. This study demonstrates a rapid and reproducible HPLC-ultraviolet (UV) method for extraction, detection and quantification of GYM-A in toxic clams. The extraction of GYM-A from the digestive gland of clams in acetone, subsequent clean-up with diethyl ether and extraction with dichloromethane is the more valid protocol. Chromatography analyses were performed using a gradient of acetonitrile–water (10:90 to 90:10), containing trifluoroacetic acid (0.1%) for 20 min at 1 mL/min rate with a C18 column. Recovery rates exceeded 96%, and limits of detection and quantification were 5 ng/mL and 8 ng/g digestive gland, respectively. Repeatability and reproducibility were tested for various samples containing different levels of GYM-A. A significant correlation was observed between toxicity level of samples and the determined amount of GYM-A. Also, the persistence of GYM-A in contaminated clams from Boughrara lagoon was demonstrated. The kinetics discharge study of GYM-A in controlled medium, during 1 month, showed that the process of depuration was biphasic with an exponential discharge of 75% of the total amount of sequestered GYM-A during the first 12 days followed by a slow discharge (>10%) for the subsequent days up to the seventeenth day. This is the first time that a quantitative study of GYM-A in clams from Tunisian coasts is performed through the development of a new method for detection and quantify of this phycotoxin. We found HPLC-UV a reliable and suitable alternative to the mouse bioassay.  相似文献   
72.
Characterization of the molecular basis of phenylketonuria (PKU) in Syria has been accomplished through the analysis of 78 unrelated chromosomes from 39 Syrian patients with PKU. Phenylalanine hydroxylase (PAH) gene mutations have been analyzed by using molecular detection methods based on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR and direct DNA sequencing. 56.4% of the patients had cPKU. A mutation detection rate of 79.49% was achieved and sixteen different mutations were found: missense 56.25%, splice site 37.5%, and frameshift 6.25%. The predominant mutation in this population sample was p.R261Q G>A, p.F55>Lfs and p.R243Q G>A. No mutation in six PKU patients was observed. In 57.9% of patient genotypes, the metabolic phenotype could be predicted. The identification of the mutations in the PAH gene and the genotype–phenotype correlation should facilitate the evaluation of metabolic phenotypes, diagnosis, implementation of optimal dietary therapy, and determination of prognosis in the patients and genetic counseling for the patient's relatives.  相似文献   
73.
Genetic deficiency of the glycogen debranching enzyme causes glycogen storage disease type III, an autosomal recessive inherited disorder. The gene encoding this enzyme is designated as AGL gene. The disease is characterized by fasting hypoglycemia, hepatomegaly, growth retardation, progressive myopathy and cardiomyopathy. In the present study, we present clinical features and molecular characterization of two consanguineous Tunisian siblings suffering from Glycogen storage disease type III. The full coding exons of the AGL gene and their corresponding exon–intron boundaries were amplified for the patients and their parents. Gene sequencing identified a novel single point mutation at the conserved polypyrimidine tract of intron 21 in a homozygous state (IVS21-8A>G). This variant cosegregated with the disease and was absent in 102 control chromosomes. In silico analysis using online resources showed a decreased score of the acceptor splice site of intron 21. RT-PCR analysis of the AGL splicing pattern revealed a 7 bp sequence insertion between exon 21 and exon 22 due to the creation of a new 3′ splice site. The predicted mutant enzyme was truncated by the loss of 637 carboxyl-terminal amino acids as a result of premature termination. This novel mutation is the first mutation identified in the region of Bizerte and the tenth AGL mutation identified in Tunisia. Screening for this mutation can improve the genetic counseling and prenatal diagnosis of GSD III.  相似文献   
74.
Recent studies have identified several single nucleotide polymorphisms (SNPs) in the population that are associated with variations in the risks of many different cancer diseases. For ovarian cancer, the known highly penetrant susceptibility genes (BRCA1 and BRCA2) are probably responsible for only 40 % of the excess familial ovarian cancer risks, suggesting that other susceptibility genes of lower penetrance exist. The aim of the present study was to evaluate the role of SNPs in three genes, XRCC2 (R188H), ERCC2 (K751Q) and CDKN1B (V109G) which are with moderate risk for ovarian cancer susceptibility in Egyptian women. We further investigated the potential combined effect of these genes variants on ovarian cancer risk. The three genes polymorphisms were characterized in 100 ovarian cancer Egyptian females and 100 healthy women by (RFLP–PCR) method in a case control study. Our results revealed that the frequencies of AC genotypes of ERCC2 (K751Q), and GG genotypes of CDKN1B (V109G) polymorphisms were significantly higher in EOC patients than in normal individual (P = 0.007, 0.02 respectively). The frequencies of AA genotype of XRCC2 (R188H) and CC genotype of ERCC2 (K751Q) were higher in EOC patients than in normal individual but without significance (P = 0.06, 0.38 respectively). Also, no association between any one of the three studied genes polymorphisms and the clinical characteristics of disease. The combination of GA (XRCC2) + AC (ERCC2) + GG (CDKN1B) was significantly associated with increased EOC risk. Also, the combination for GA (XRCC2) + AC (ERCC2) and the combination of AA (XRCC2) + CC (ERCC2) were significantly associated with increased EOC risk. There was significant difference in CA125 values between EOC and control Group (P < 0.001). Our results suggested that, XRCC2, ERCC2 and CDKN1B genes are important candidate genes for susceptibility to EOC. Also, gene–gene interaction between GA (XRCC2) + AC (ERCC2) + GG (CDKN1B) polymorphism may be associated with increased risk of EOCC in Egyptian women.  相似文献   
75.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   
76.
77.
This paper reports a comparative study based on the antioxidant compounds, total phenol content and antioxidant activities of leaves, stems and fruits from the main Tunisian cultivars, ‘chetoui’ and ‘chemchali’, grown in two different locations, north and south of Tunisia. The repartition of olive phenolic compounds was organ dependant. Therefore, the HPLC analysis indicated that the olive organs from the northern cultivar had the highest level of hydroxybenzoic acids, hydroxycinnamic acids and flavonoid class; which were less in the southern cultivar. Principal component analysis of the phenolic compounds showed discrimination between methanol extracts of the organs olive. Significant differences (p < 0.05) in the levels of phenols, orthodiphenols and flavonoids were found between cultivars and between organs. Antioxidant activities of the methanolic extract from aerial parts of the two studied cultivars were evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assays. In all tests, methanolic extracts of different olive parts showed higher antioxidant activity. These results can be used to discriminate and to characterize the ‘chetoui’ and ‘chemchali’ aerial parts.  相似文献   
78.
PML/TRIM19, the organizer of nuclear bodies (NBs), has been implicated in the antiviral response to diverse RNA and DNA viruses. Several PML isoforms generated from a single PML gene by alternative splicing, share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. The knockout of PML renders mice more sensitive to vesicular stomatitis virus (VSV). Here we report that among PML isoforms (PMLI to PMLVIIb), only PMLIII and PMLIV confer resistance to VSV. Unlike PMLIII, whose anti-VSV activity is IFN-independent, PMLIV can act at two stages: it confers viral resistance directly in an IFN-independent manner and also specifically enhances IFN-β production via a higher activation of IRF3, thus protecting yet uninfected cells from oncoming infection. PMLIV SUMOylation is required for both activities. This demonstrates for the first time that PMLIV is implicated in innate immune response through enhanced IFN-β synthesis. Depletion of IRF3 further demonstrates the dual activity of PMLIV, since it abrogated PMLIV-induced IFN synthesis but not PMLIV-induced inhibition of viral proteins. Mechanistically, PMLIV enhances IFN-β synthesis by regulating the cellular distribution of Pin1 (peptidyl-prolyl cis/trans isomerase), inducing its recruitment to PML NBs where both proteins colocalize. The interaction of SUMOylated PMLIV with endogenous Pin1 and its recruitment within PML NBs prevents the degradation of activated IRF3, and thus potentiates IRF3-dependent production of IFN-β. Whereas the intrinsic antiviral activity of PMLIV is specific to VSV, its effect on IFN-β synthesis is much broader, since it affects a key actor of innate immune pathways. Our results show that, in addition to its intrinsic anti-VSV activity, PMLIV positively regulates IFN-β synthesis in response to different inducers, thus adding PML/TRIM19 to the growing list of TRIM proteins implicated in both intrinsic and innate immunity.  相似文献   
79.

Background

Progressive micro-vascular vaso-degeneration is the major factor in progression of diabetic complications. Adrenomedullin (AM) and basic-Fibroblast growth factor (b-FGF) are strongly correlated with angiogenesis in vascular diseases. This study aims to provide base line data regarding the vascular effects and correlation of AM, and b-FGF with the peripheral blood flow in diabetic patients with peripheral vascular disease (PVD), and their effect on endothelial dysfunction markers. Ninety age- and sex matched females were enrolled in the study: 30 were controls, 30 had diabetes without complications (group II) and 30 had diabetes with PVD (group III) diagnosed by ankle/ brachial index (A/BI). Plasma levels of AM, b-FGF, intercellular adhesion molecule −1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured by indirect enzyme immunoassay (ELISA).

Results

There was a significant increase in plasma AM, VCAM-1and ICAM-1, while a significant decrease in plasma b-FGF in diabetic patients with PVD (p < 0.05). A positive correlation was observed between plasma AM, b-FGF and A/BI and a negative correlation with VCAM −1 and ICAM in diabetic PVD. AM was not a predictor, while b-FG, VCAM-1 and ICAM-1 could be predictors for peripheral blood flow in diabetic PVD.

Conclusion

This study elucidates for the first time that AM and b-FGF are correlated and have a direct impact on the peripheral blood flow, the rise of AM in diabetic PVD may be a consecutive and compensatory vasculo-protective effect as its angiogenic and anti-inflammatory properties act to relief the endothelial insult. Down expression of b-FGF may be a predisposing factor for micro-vascular derangement. It is not clear if the rise of AM and the decline of b- FGF levels may be consequences or predisposing factors for VCAM-1 and ICAM-1 elevation as these endothelial dysfunction biomarkers could reduce peripheral blood flow and vascular integrity. It is optimistic to believe that drug intervention through AM and b-FGF administration together with reversing the endothelial inflammatory process by targeting VCAM and ICAM could reduce the prevalence of diabetic vascular complications, reduce the risk of cerebrovascular and cardiovascular morbidity in diabetes through normalizing vascular endothelium function and peripheral blood flow.  相似文献   
80.
Proteoglycans are important components of cell plasma membranes and extracellular matrices of connective tissues. They consist of glycosaminoglycan chains attached to a core protein via a tetrasaccharide linkage, whereby the addition of the third residue is catalyzed by galactosyltransferase II (β3GalT6), encoded by B3GALT6. Homozygosity mapping and candidate gene sequence analysis in three independent families, presenting a severe autosomal-recessive connective tissue disorder characterized by skin fragility, delayed wound healing, joint hyperlaxity and contractures, muscle hypotonia, intellectual disability, and a spondyloepimetaphyseal dysplasia with bone fragility and severe kyphoscoliosis, identified biallelic B3GALT6 mutations, including homozygous missense mutations in family 1 (c.619G>C [p.Asp207His]) and family 3 (c.649G>A [p.Gly217Ser]) and compound heterozygous mutations in family 2 (c.323_344del [p.Ala108Glyfs163], c.619G>C [p.Asp207His]). The phenotype overlaps with several recessive Ehlers-Danlos variants and spondyloepimetaphyseal dysplasia with joint hyperlaxity. Affected individuals’ fibroblasts exhibited a large decrease in ability to prime glycosaminoglycan synthesis together with impaired glycanation of the small chondroitin/dermatan sulfate proteoglycan decorin, confirming β3GalT6 loss of function. Dermal electron microcopy disclosed abnormalities in collagen fibril organization, in line with the important regulatory role of decorin in this process. A strong reduction in heparan sulfate level was also observed, indicating that β3GalT6 deficiency alters synthesis of both main types of glycosaminoglycans. In vitro wound healing assay revealed a significant delay in fibroblasts from two index individuals, pointing to a role for glycosaminoglycan defect in impaired wound repair in vivo. Our study emphasizes a crucial role for β3GalT6 in multiple major developmental and pathophysiological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号