全文获取类型
收费全文 | 971篇 |
免费 | 71篇 |
国内免费 | 3篇 |
专业分类
1045篇 |
出版年
2024年 | 5篇 |
2023年 | 32篇 |
2022年 | 49篇 |
2021年 | 80篇 |
2020年 | 86篇 |
2019年 | 115篇 |
2018年 | 68篇 |
2017年 | 48篇 |
2016年 | 57篇 |
2015年 | 45篇 |
2014年 | 71篇 |
2013年 | 84篇 |
2012年 | 72篇 |
2011年 | 64篇 |
2010年 | 36篇 |
2009年 | 28篇 |
2008年 | 26篇 |
2007年 | 19篇 |
2006年 | 14篇 |
2005年 | 17篇 |
2004年 | 6篇 |
2003年 | 7篇 |
2002年 | 6篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有1045条查询结果,搜索用时 15 毫秒
101.
102.
Maliheh Barazandeh Tehrani Zahra Rezaei Mehdi Asadi Hossein Behnammanesh Hamid Nadri Fatemeh Afsharirad Alireza Moradi Bagher Larijani Maryam Mohammadi‐Khanaposhtani Mohammad Mahdavi 《化学与生物多样性》2019,16(7)
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE. 相似文献
103.
Fatemeh Rahimi Gharemirshamlu Kourosh Bamdad Sirous Naeimi 《Journal of cellular biochemistry》2019,120(8):14156-14164
In this study we are looking into two contradicting mutations found in prion protein (PrP) viz G127V and D178V, that are reportedly protective and pathogenic, respectively. Despite significant advances in comprehension of the role of pathogenic mutations, the role of protective mutation in amyloid fold inhibition still lacks a substantial basis. To understand the structural basis of protective mutation, molecular dynamics simulation coupled with protein-protein docking and molecular mechanics/Poisson-Boltzmann surface area analysis was used to understand the instant structural variability brought about by these mutations alone and in combination on PrP and prion-prion complex. Atomic-scale investigations successfully revealed that the binding pattern of prion-prion varies differentially in protective and pathogenic mutations with secondary structure showing distinct contrasting patterns, which could supposedly be a critical factor for differential prion behavior in protective and pathogenic mutations. Considering the reported role of an amyloid fold in prion-prion binding, the contrasting pattern has given us a lead in comprehending the role of these mutations and has been used in this study to look for small molecules that can inhibit amyloid fold for prion-prion interaction in pathogenic mutant carrying PrP. 相似文献
104.
Javid Sadri Nahand Farah Bokharaei-Salim Arash Salmaninejad Abolfazl Nesaei Fatemeh Mohajeri Azadeh Moshtzan Alireza Tabibzadeh Mohammad Karimzadeh Mohsen Moghoofei Arezo Marjani Shoeleh Yaghoubi Hossein Keyvani 《Journal of cellular physiology》2019,234(8):12188-12225
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression. 相似文献
105.
Gholamreza Hassanzadeh Samaneh Hosseini Quchani Mohammad Ali Sahraian Farid Abolhassani Mohammad Ali Sadighi Gilani Masoomeh Dehghan Tarzjani Fatemeh Atoof 《Cellular and molecular neurobiology》2016,36(6):865-872
Multiple sclerosis is a neurodegenerative disease characterized by the present of leukocytes in the brain tissue and subsequently the formation of sclerotic plaques. Leukocytes penetration into the blood–brain barrier is related to several factors, such as, the conversion of leukocyte gene expression or plasma characteristics. In this frame, we explore alteration of matrix metalloproteinase-2 (MMP-2), transforming growth factor beta (TGF-β) family, and Claudin-11 (as a main myelin structural protein) in leukocytes and blood plasma of multiple sclerosis patients compared to the normal group. Blood samples were collected from thirteen men affected by MS and fifteen healthy men. Leukocyte gene expression was measured using real-time PCR and plasma parameters were examined by ELISA. The results of this study showed that the gene expression of Claudin-11 was significantly higher in MS group compared with normal. Interestingly, the MMP-2 pattern was similar to Claudin-11 and correlated positively with it. It was observed that, although the expressions of TGF-β1 and TGF-β2 are down-regulated in the leukocytes of subjects with MS, they showed higher levels of these cytokines in blood plasma. The plasma level of TGF-β3 in MS patients was higher than normal and correlated with Claudin-11 concentration. In conclusion, the aberrant pattern of Claudin-11, TGF-βs family, and MMP-2 expression in leukocytes of the MS patients was observed in this study. Moreover, the plasma levels of TGF-βs family increased in the MS group. The findings of this study provide clues for further investigations to assay MS pathogenesis. 相似文献
106.
Parvaneh Sayyad-Amin Mohammad-Reza Jahansooz Azam Borzouei Fatemeh Ajili 《Journal of biological physics》2016,42(4):601-620
Water shortage leads to a low quality of water, especially saline water in most parts of agricultural regions. This experiment was designed to determine the effects of saline irrigation on sorghum as a moderately salt-tolerant crop. To study salinity effects on photosynthetic pigment attributes including the chlorophyll content and chlorophyll fluorescence, an experiment was performed in a climate-controlled greenhouse at two vegetative and reproductive stages. The experimental design was factorial based on a completely randomized design with five NaCl concentrations (control, 50, 100, 150, and 200 mM), two grain and sweet-forage sorghum cultivars (Kimia and Pegah, respectively) and four replications. According to the experimental data, there were no significant differences between two grain and sweet-forage cultivars. Except for 100 and 150 mM NaCl, salinity significantly decreased the chlorophyll index and pigment contents of the leaf, while it increased the chlorophyll-a fluorescence characteristics. Although salinity reduced photosynthetic pigments and the crop yield, either grain or sweet-forage cultivars could significantly control the effect of salinity between 100 and 150 mM NaCl at both developmental stages, showing the possibility of using saline water in sorghum cultivation up to 150 mM NaCl. 相似文献
107.
Fatemeh Mousavi Emanuela Gionfriddo Eduardo Carasek Erica A. Souza-Silva Janusz Pawliszyn 《Metabolomics : Official journal of the Metabolomic Society》2016,12(11):169
Introduction
Essential oils are known to possess antimicrobial activity; thus, their use has played an important role over the years in medicine and for food preservation purposes.Objective
The effect of clove oil and its major constituents as bactericidal agents on the global metabolic profiling of E. coli bacteria was assessed by means of metabolic alterations, using solid phase microextraction (SPME) as a sample preparation method coupled to complementary analytical platforms.Method
E. Coli cultures treated with clove oil and its major individual components were sampled by HS-SPME-GCxGC-ToF/MS and SPME-UPLC–MS. Full factorial design was applied in order to estimate the most effective antibacterial agent towards E. coli. Central composite design and factorial design were applied to investigate parameters influencing metabolite coverage and efficiency by SPME.Results
The metabolic profile, including 500 metabolites identified by LC–MS and 789 components detected by GCxGC-ToF/MS, 125 of which were identified as dysregulated metabolites, revealed changes in the metabolome provoked by the antibacterial activity of clove oil, and in particular its major constituent eugenol. Analyses of individual components selected using orthogonal projections to latent structures discriminant analysis showed a neat differentiation between control samples in comparison to treated samples in various sets of metabolic pathways.Conclusions
The combination of a sample preparation method capable of providing cleaner extracts coupled to different analytical platforms was successful in uncovering changes in metabolic pathways associated with lipids biodegradation, changes in the TCA cycle, amino acids, and enzyme inhibitors in response to antibacterial treatment.108.
Fatemeh Norozi Javad Mohammadi-asl Tina Vosoughi Mohammad Ali Jalali Far Amal Saki Malehi Najmaldin Saki 《生物学前沿》2016,11(5):404-411
Objectives
Targeted therapy of Philadelphia-positive ALL and CML patients using imatinib (IM) has caused significant changes in treatment course and has increased the survival of patients. A small group of patients show resistance to IM. Acquired mutations in tyrosine kinase domain of BCR-ABL protein are a mechanism for development of resistance. T315I is one of the most common acquired mutations in this domain, which occurs in ATP binding site and inhibits the formation of hydrogen bond with IM. The aim of this study was to evaluate the prevalence of this mutation in BCR/ABL-positive CML and ALL patients.Methods
To conduct this study, 60 BCR-ABL-positive patients (including 50 CML and 10 ALL patients) who were subject to treatment with IM were selected. After taking the samples, presence of T315I mutation was assessed using ARMS-PCR on cDNA and its polymorphism was evaluated by sequencing.Results
The results showed that among 60 patients, only three patients had T315I mutation, which was detected using ARMS technique. The three patients bearing mutation were afflicted with CML and no significant association was found between blood parameters with duration of treatment in presence of mutation.Conclusions
The mutation was found in three CML patients, which indicated lower likelihood and diagnostic value of this mutation in ALL patients. Given the negative direct sequencing results in T315I patients, it can be concluded that ARMS-PCR is a more sensitive technique when the number of cancer cells is low in patients during treatment.109.
Fatemeh Khakdan Mojtaba Ranjbar Jaber Nasiri Farajollah Shahriari Ahmadi Abdolreza Bagheri Houshang Alizadeh 《Acta Physiologiae Plantarum》2016,38(9):226
The current investigation was conducted to elucidate the potential modulatory functions of both enzymatic and non-enzymatic scavenging elements of three Iranian basil (Ocimum basilicum L.) cultivars in response to different water-deficit stress treatments [i.e., control (W1: 100 % FC), mild (W2: 75 % FC), moderate (W3: 50 % FC), and severe (W4: 25 % FC)]. In general, the growth parameters, viz., plant height, number of lateral branches, number of flowers in the inflorescence per plant, and dry and fresh weights of leaves and inflorescence followed by yield were considerably affected by water-deficit stress levels (p ≤ 0.05), though some fluctuations were observed among three cultivars. Under severe water-deficit stress (W4), total chlorophyll content overall increased, while a pronounced reduction in the carotenoid content was observed by boosting of water-deficit stress intensities. Apart from some quantitative variations, ROS-scavenging enzymes, such as SOD, CAT, APX, GPX, and PPO, exhibited different behaviors versus different levels of water-deficit stress in the basil cultivars, concluding that their modulation could be a cultivar-dependent mechanism and stress-dependent mechanism. Among different metabolites detected in the essential oil of basil cultivars, both methyl chavicol and squalene were superior in the cultivars 2 and 3, while in cultivar 1, linalool and squalene were the predominant constituents, under water deprivation conditions. Taking all the features studied here into consideration, presumably, cultivar 1 is qualified enough to nominate as the most tolerant basil cultivar, could be accordingly utilized as a promising source/material for breeding programs of basil under drought stress, and possibly other abiotic stresses. 相似文献
110.
Mathematical modeling of cell growth in a 3D scaffold and validation of static and dynamic cultures 下载免费PDF全文
Fatemeh Mokhtari‐Jafari Ghassem Amoabediny Nooshin Haghighipour Reza Zarghami Alireza Saatchi Javad Akbari Nasim Salehi‐Nik 《Engineering in Life Science》2016,16(3):290-298
Tissue engineering, an immensely important field in contemporary clinical practices, aims at the repair or replacement of damaged tissues. The mathematical model proposed herein shows the distribution and growth of cells in their characteristic time in a 3D scaffold model. This study contributes to the progress of simulation techniques in static and dynamic cultures of bone tissue. Brinkman, nutrient transport, and cell growth equations are brought together to quantify the growth behavior of cells. However, when a static culture is being studied, the Brinkman equation is eliminated. The model was validated by experimental cell culture using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and scanning electron microscopy. Then, static and dynamic cultures were compared to assess the cell density and cell distribution in the scaffold. Cell counting after 21 days of cell culture showed that the number of cells increased 42‐fold in static and 53.5‐fold in dynamic cultures, which was in good agreement with our model estimations (37‐fold increase in the number of cells in static and 49‐fold increase in dynamic cultures). In conclusion, our mathematical model could predict cell distribution and growth in the scaffold. 相似文献