首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   66篇
  国内免费   3篇
  2024年   4篇
  2023年   31篇
  2022年   34篇
  2021年   76篇
  2020年   82篇
  2019年   114篇
  2018年   66篇
  2017年   45篇
  2016年   54篇
  2015年   38篇
  2014年   65篇
  2013年   78篇
  2012年   65篇
  2011年   58篇
  2010年   34篇
  2009年   28篇
  2008年   23篇
  2007年   17篇
  2006年   12篇
  2005年   15篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有965条查询结果,搜索用时 46 毫秒
891.
Tropisetron exerts a protective effect against cardiac complications, particularly cardiac hypertrophy. Oxidative stress and apoptosis are the main contributors to the pathogenesis of cardiac hypertrophy. Sirtuins, a family of histone deacetylases, are connected to cellular oxidative stress signaling and antioxidant defense. Sirtuins are also linked to apoptosis which is an important mechanism in the progression of cardiac hypertrophy to heart failure. Literature also suggests that tropisetron impedes apoptosis, partly mediated through an antioxidant mechanism. Therefore, we examined if tropisetron fights cardiac hypertrophy by adjusting sirtuin family proteins (Sirts) and components of mitochondrial death pathway, Bcl-associated X (BAX), Bcl-2-associated death promoter (BAD). Male Sprague–Dawley rats got divided into four groups, including control (Ctl), tropisetron (Trop), cardiac hypertrophy (Hyp), and hypertrophic rats under tropisetron treatment (Hyp + Trop). Pathological cardiac hypertrophy was induced by surgical abdominal aortic constriction (AAC). The increased expression of brain natriuretic peptide (BNP) in the Hyp group confirms the cardiac hypertrophy establishment. The mRNA levels of SIRT1, SIRT3, SIRT7, and BAD also upregulated in the hypertrophic group (p < 0.001). Postoperational administration of tropisetron for 3 weeks lowered the increased expression of BNP (p < 0.05) and BAD (p < 0.001), though the reduction of BAX expression was statistically insignificant (p > 0.05). Tropisetron treatment also restored the normal level of SIRT1/3/7 genes expression in the Hyp + Trop group (p < 0.05). Present findings suggest that tropisetron can suppress cardiomyocyte hypertrophy progression to heart failure by counteracting BNP, SIRT1, SIRT3, Sirt7, and BAD overexpression-mediated apoptosis in a rat model of cardiac hypertrophy.  相似文献   
892.
A computational method is developed to allow molecular dynamics simulations of biomembrane systems under realistic ionic gradients and asymmetric salt concentrations while maintaining the conventional periodic boundary conditions required to minimize finite-size effects in an all-atom explicit solvent representation. The method, which consists of introducing a nonperiodic energy step acting on the ionic species at the edge of the simulation cell, is first tested with illustrative applications to a simple membrane slab model and a phospholipid membrane bilayer. The nonperiodic energy-step method is then used to calculate the reversal potential of the bacterial porin OmpF, a large cation-specific β-barrel channel, by simulating the I-V curve under an asymmetric 10:1 KCl concentration gradient. The calculated reversal potential of 28.6 mV is found to be in excellent agreement with the values of 26–27 mV measured from lipid bilayer experiments, thereby demonstrating that the method allows realistic simulations of nonequilibrium membrane transport with quantitative accuracy. As a final example, the pore domain of Kv1.2, a highly selective voltage-activated K+ channel, is simulated in a lipid bilayer under conditions that recreate, for the first time, the physiological K+ and Na+ concentration gradients and the electrostatic potential difference of living cells.  相似文献   
893.
Molecular Biology Reports - Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and...  相似文献   
894.
Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3N4/nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3N4 and g-C3N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3N4/nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3N4/nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3N4/nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.  相似文献   
895.
Majed  Ali  Raji  Fatemeh  Miri  Ali 《Cluster computing》2022,25(1):401-416

Data availability represents one of the primary functionalities of any cloud storage system since it ensures uninterrupted access to data. A common solution used by service providers that increase data availability and improve cloud performance is data replication. In this paper, we present a dynamic data replication strategy that is based on a hybrid peer-to-peer cloud architecture. Our proposed strategy selects the most popular data for replication. To determine the proper nodes for storing popular data, we employ not only the feature specifications of storage nodes, but also the relevant structural positions in the cloud network. Our simulation results show the impact of using features such as data popularity, and structural characteristics in improving network performance and balancing the storage nodes, and reducing user response time.

  相似文献   
896.
Cell-based immunotherapies have been selected for the front-line cancer treatment approaches. Among them, CAR-T cells have shown extraordinary effects in hematologic diseases including chemotherapy-resistant acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphoma (NHL). In this approach, autologous T cells isolated from the patient''s body genetically engineered to express a tumor specific synthetic receptor against a tumor antigen, then these cells expanded ex vivo and re-infusion back to the patient body. Recently, significant clinical response and high rates of complete remission of CAR T cell therapy in B-cell malignancies led to the approval of Kymriah and Yescarta (CD19-directed CAR-T cells) were by FDA for treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Despite promising therapeutic outcomes, CAR T cells also can elicit the immune-pathologic effects, such as Cytokine Release Syndrome (CRS), Tumor Lysis Syndrome (TLS), and on-target off-tumor toxicity, that hampered its application. Ineffective control of these highly potent synthetic cells causes discussed potentially life-threatening toxicities, so researchers have developed several mechanisms to remote control CAR T cells. In this paper, we briefly review the introduced toxicities of CAR-T cells, then describe currently existing control approaches and review their procedure, pros, and cons.  相似文献   
897.
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.  相似文献   
898.
Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22–89 years) and measured microstructure parameters—fractional anisotropy (FA) and mean diffusivity (MD)—in 12 thigh muscles, and architecture parameters—pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)—in the rectus femoris (RF) and biceps femoris longus (BFL). Knee extension and flexion torques were also measured for comparison to architecture measures. FA and MD were associated with age (β = 0.33, p = 0.001, R2 = 0.10; and β = −0.36, p < 0.001, R2 = 0.12), and FA was negatively associated with Type I fiber proportions from the literature (β = −0.70, p = 0.024, and R2 = 0.43). Pennation angle, fiber curvature, fascicle length, and PCSA were associated with age in the RF (β = −0.22, 0.26, −0.23, and −0.31, respectively; p < 0.05), while in the BFL only curvature and fascicle length were associated with age (β = 0.36, and −0.40, respectively; p < 0.001). In the RF, pennation angle and PCSA were associated with strength (β = 0.29, and 0.46, respectively; p < 0.01); in the BFL, only PCSA was associated with strength (β = 0.43; p < 0.001). Our results show skeletal muscle architectural changes with aging and intermuscular differences in the microstructure. DT-MRI may prove useful for elucidating muscle changes in the early stages of sarcopenia and monitoring interventions aimed at preventing age-associated microstructural changes in muscle that lead to functional impairment.  相似文献   
899.
Osmotic stress associated with drought and salinity is a serious problem that inhibits the growth of plants mainly due to disturbance of the balance between production of ROS and antioxidant defense and causes oxidative stress. In this research, sodium nitroprusside (SNP) was used as NO donor in control and drought-stressed plants, and the role of NO in reduction of oxidative damages were investigated. In this study, we observed that SNP pretreatment prevented drought-induced decrease in RWC and membrane stability index, increase in lipid peroxidation and lipoxygenase activity and increase in hydrogen peroxide content. However, pretreatment of plants with SNP and phenyl 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (a NO scavenger) reversed the protective effects of SNP suggesting that protective effect by SNP is attributable to NO release. In addition, the relationship between these defense mechanisms and activity of antioxidant enzymes were checked. Results showed that in drought-stressed plants ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase activities were elevated over the controls, while GR decreased under drought condition. Activity of GPX was inhibited under SNP pretreatment in drought-stressed plants specially, while the activity of APX and GR increased under SNP pretreatment and it seems that under this condition APX had a key role of detoxification of ROS in tomato plants. This result corresponded well with ASA and total acid-soluble thiols content. Therefore, reduction of drought-induced oxidative damages by NO in tomato leaves is most likely mediated through either NO ability to scavenge active oxygen species or stimulation of antioxidant enzyme such as APX.  相似文献   
900.
To date, there has been little agreement on supporting the hypothesis that how some key vegetative traits of camelina (Camelina sativa (L.) Crantz var. ‘Soheil’) are dependent on plant biomass. Therefore, the main aim of this investigation was to quantify the relationship between the size of camelina plants and seed production across a broad-range of plant densities through modelling approaches. To make a wide range of plant densities, a fan design was used in eight replicates in an experimental field at Sari Agricultural Sciences and Natural Resources University, Iran. To quantify the relation between plant density and other plant traits, a regression analysis was carried out and the coefficient of determination (R2) was considered to evaluate the goodness of fit model. A power model (y = axb) could describe well the relationship between plant density (ranged 113–2905 plants m−2) and plant biomass, seed production, number of seeds per plant, stem diameter, and siliques number, with the coefficient of determination (R2) values of 0.85, 0.87, 0.65, 0.64, and 0.90, respectively. The harvest indexes were 13.8%–26.9%, depending on plant density. Seed production per plant was positively correlated to the siliques number (r = 0.85), the branch number (r = 0.80), and the seed number (r = 0.99) which could be key components of camelina seed production per plant. Furthermore, no significant correlation was found among plant height, thousand-seed weight, and harvest index with seed production per plant. In conclusion, plant biomass could be considered an important trait to predict plant growth models of camelina. Also, a lower plant density of camelina can be compensated by a greater number of siliques, branches and seeds per plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号