全文获取类型
收费全文 | 906篇 |
免费 | 67篇 |
国内免费 | 3篇 |
专业分类
976篇 |
出版年
2024年 | 4篇 |
2023年 | 32篇 |
2022年 | 46篇 |
2021年 | 76篇 |
2020年 | 82篇 |
2019年 | 113篇 |
2018年 | 66篇 |
2017年 | 45篇 |
2016年 | 54篇 |
2015年 | 38篇 |
2014年 | 65篇 |
2013年 | 78篇 |
2012年 | 64篇 |
2011年 | 58篇 |
2010年 | 34篇 |
2009年 | 28篇 |
2008年 | 23篇 |
2007年 | 17篇 |
2006年 | 12篇 |
2005年 | 15篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有976条查询结果,搜索用时 15 毫秒
41.
Mohammad-Javad Sanaei Fatemeh Taheri Masoud Heshmati Davood Bashash Roya Nazmabadi Faramarz Mohammad-Alibeigi Mahboobeh Nahid-Samiei Hedayatollah Shirzad Nader Bagheri 《Cell biology international》2021,45(10):2086-2095
Prostate cancer (PCa) is one of the most epidemic types of cancer in men. The tumor microenvironment (TME) of PCa is involved in the emergence of immunosuppressive factors such as myeloid-derived suppressor cells (MDSC), which regulate the immune system by several mechanisms, including interleukin (IL)-10 production. On the other hand, IL-17+ helper T cells (Th17) induce MDSCs and chronic inflammation in TME by producing IL-17. This study demonstrated that the frequency of CD33+ pSTAT3+ MDSC and IL-17+ lymphocyte as well as IL-10 messenger RNA (mRNA) expression were significantly higher in the PCa patients than in the benign prostatic hyperplasia (BPH) group. Moreover, there was no significant relationship between the frequency of CD33+ pSTAT3+ MDSC, and IL-17+ lymphocyte with Gleason scores in the PCa group. We suggested that the higher frequency of CD33+ pSTAT3+ MDSC and IL-17+ lymphocyte and the more frequent expression of IL-10 mRNA in PCa patients may play roles in tumor progression from BPH to PCa. 相似文献
42.
Mapping DNA damage‐dependent genetic interactions in yeast via party mating and barcode fusion genetics 下载免费PDF全文
J Javier Díaz‐Mejía Albi Celaj Joseph C Mellor Atina Coté Attila Balint Brandon Ho Pritpal Bansal Fatemeh Shaeri Marinella Gebbia Jochen Weile Marta Verby Anna Karkhanina YiFan Zhang Cassandra Wong Justin Rich D'Arcy Prendergast Gaurav Gupta Sedide Öztürk Daniel Durocher Grant W Brown Frederick P Roth 《Molecular systems biology》2018,14(5)
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. 相似文献
43.
Fatemeh Khatami Bagher Larijani Ramin Heshmat Shirzad Nasiri Mohammad Haddadi-Aghdam Ladan Teimoori-Toolabi Seyed M. Tavangar 《Journal of cellular physiology》2020,235(10):6954-6968
Circulating cell-free DNA (cfDNA) has been considered as a diagnostic source to track genetic and epigenetic alterations in cancer. We aimed to study mutation in addition to the methylation status in the promoter regions of RASSF1 and SLC5A8 genes in tissues and circulating free DNA samples of patients affected with papillary thyroid carcinoma (PTC) and thyroid nodules as controls. BRAFV600E mutation was studied by ARMS-scorpion real-time polymerase chain reaction method in 57 PTC and 45 thyroid nodule cases. Methylation status of RASSF1 and SLC5A8 promoter regions was analyzed by methylation-specific high-resolution melting curve analysis. BRAFV600E mutation was found in 39 (68.4%) out of 57 PTC tissue samples, while in 33 (49.1%) cases of cfDNA, this mutation was detected. The frequency of BRAFV600E mutation in cfDNA was significantly different between metastatic and nonmetastatic PTC cases (22 of 33 PTC cases vs. 5 of 34 thyroid nodule samples). Methylation levels of three promoter regions of SLC5A8 and proximal promoter region of RASSF1 was significantly different between PTC and thyroid nodule cases in both cfDNA and tissue DNA. In addition, the methylation status of these two genes in tissue DNA was reflected in methylation status observed in cfDNA. This study confirmed that BRAFV600E mutation is better for discrimination between papillary thyroid carcinoma and thyroid nodules. On the other hand, hypermethylation in the more proximal promoter regions to RASSF1 and SLC5A8 genes showed higher sensitivity and more acceptable specificity for this discrimination. 相似文献
44.
Andrew R. Miller Gregory L. Davis Z. Maria Oden Mohamad Reza Razavi Abolfazl Fateh Morteza Ghazanfari Farid Abdolrahimi Shahin Poorazar Fatemeh Sakhaie Randall J. Olsen Ahmad Reza Bahrmand Mark C. Pierce Edward A. Graviss Rebecca Richards-Kortum 《PloS one》2010,5(8)
This study describes the design and evaluation of a portable bright-field and fluorescence microscope that can be manufactured for $240 USD. The microscope uses a battery-operated LED-based flashlight as the light source and achieves a resolution of 0.8 µm at 1000× magnification in fluorescence mode. We tested the diagnostic capability of this new instrument to identify infections caused by the human pathogen, Mycobacterium tuberculosis. Sixty-four direct, decontaminated, and serially diluted smears were prepared from sputa obtained from 19 patients suspected to have M. tuberculosis infection. Slides were stained with auramine orange and evaluated as being positive or negative for M. tuberculosis with both the new portable fluorescence microscope and a laboratory grade fluorescence microscope. Concordant results were obtained in 98.4% of cases. This highly portable, low cost, fluorescence microscope may be a useful diagnostic tool to expand the availability of M. tuberculosis testing at the point-of-care in low resource settings. 相似文献
45.
Effects of grapevine bunch exposure to sunlight on berry surface temperature and Lobesia botrana (Lepidoptera: Tortricidae) egg laying,hatching and larval settlement 下载免费PDF全文
Fatemeh Kiaeian Moosavi Elena Cargnus Francesco Pavan Pietro Zandigiacomo 《Agricultural and Forest Entomology》2018,20(3):420-432
46.
Fatemeh Daneshmand Mohammad Javad Arvin Khosrow Manouchehri Kalantari 《Acta Physiologiae Plantarum》2010,32(1):91-101
In this study, responses of wild species of potato to NaCl stress were investigated in vitro. In S. stoloniferum and S. bulbosum, length of the shoot, fresh and dry weight, photosynthetic pigments, K+ concentration, K+/Na+ ratio, ascorbate pool, anthocyanin, and phenolic and flavonoid compounds were decreased in response to salinity. In these species, salinity increased the level of Na+, lipid peroxidation, proline and ion leakage percentage. In S. acaule, the length of the shoot, and fresh and dry weight were not affected by salinity. Photosynthetic pigments, Na+ concentration, proline, flavonoid and phenolic compounds quantities were increased and K+/Na+ ratio were decreased. K+ concentration, lipid peroxidation, ascorbate pool, anthocyanin and ion leakage were not changed by NaCl stress. Superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and catalase activities were increased in all species. The results suggest that the non-enzymatic antioxidant capacity in S. acaule (salt tolerant) is more important than the enzymatic antioxidant capacity in comparison with the other species. 相似文献
47.
This study was undertaken to investigate the hematological and biochemical changes in experimentally infected goats with Besnoitia caprae from the time of infection till 360 days post-infection (PI). Six male goats were inoculated subcutaneously with 13 × 10(7) bradyzoites of B. caprae, and blood samples were collected from the jugular vein. The total erythrocyte and total leukocyte counts, hematocrit value, and differential leukocyte counts were determined. Serum biochemical analysis, including the total protein, albumin, total globulin, cholesterol, triglyceride, chloride, testosterone, calcium (Ca(2+)), inorganic phosphorus, sodium (Na(+)), potassium (K(+)), iron (Fe(2+)), glucose, serum amyloid A (SAA), haptoglobin (Hp), fibrinogen, ceruloplasmin, aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and alkaline phosphatase, was undertaken. Skin biopsy from the limbs were collected at weekly intervals and histologically examined for Besnoitia cysts. Cysts were present in the skin biopsies of the leg of the infected goats from day 28 PI. There were variations in hematological analyses, but no significant difference was seen. From day 30 to 360 PI, results showed that SAA, Hp, fibrinogen, and ceruloplasmin concentrations increased, whereas testosterone concentrations decreased. Infected goats exhibited decrease of albumin and increase of serum total protein and globulin concentrations. By contrast, there were no significant differences in the remained analyses concentrations. 相似文献
48.
Shamsi Yari Alireza Hadizadeh Tasbiti Mostafa Ghanei Mohammad Ali Shokrgozar Behrouz Vaziri Reza Mahdian Fatemeh Yari Ahmadreza Bahrmand 《Microbiology》2016,85(3):350-358
Multidrug-resistant tuberculosis (MDR-TB) is caused by bacteria that are resistant to the most effective anti TB drugs (Isoniazid and Rifampicin) with or without resistance to other drugs. Novel intervention strategies to eliminate this disease based on finding proteins can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profile of MDR-TB with sensitive isolates. Two-dimensional gel electrophoresis (2DE) along with mass spectrometry is a powerful and effective tool to identification and characterization of Mycobacterium tuberculosis. Two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for diagnosis and comparison of proteins. We identified 14 protein spots in MDR-TB isolates that 2DE analysis showed these spots absent in M. tuberculosis sensitive isolates (Rv1876, Rv0379, Rv0147, Rv2031c, Rv3597c, Rv1886c, MT0493, Rv0440, Rv3614c, Rv1626, Rv0443, Rv0475, Rv3057 and unknown protein. The results showed 22 protein spots which were up regulated (or expressed) by the MDR-TB isolates, (Rv1240, Rv3028c, Rv2971, Rv2114c, Rv3311, Rv3699, Rv1023, Rv1308, Rv3774, Rv0831c, Rv2890c, Rv1392, Rv0719, Rv0054, Rv3418c, Rv0462, Rv2215, Rv2986c, Rv3248c and Rv1908c)). Two up regulated protein spots were identified in sensitive isolate (Rv1133c and Rv0685). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug resistant and sensitive of M. tuberculosis. 相似文献
49.
Fatemeh Rahimi Gharemirshamlu Kourosh Bamdad Sirous Naeimi 《Journal of cellular biochemistry》2019,120(8):14156-14164
In this study we are looking into two contradicting mutations found in prion protein (PrP) viz G127V and D178V, that are reportedly protective and pathogenic, respectively. Despite significant advances in comprehension of the role of pathogenic mutations, the role of protective mutation in amyloid fold inhibition still lacks a substantial basis. To understand the structural basis of protective mutation, molecular dynamics simulation coupled with protein-protein docking and molecular mechanics/Poisson-Boltzmann surface area analysis was used to understand the instant structural variability brought about by these mutations alone and in combination on PrP and prion-prion complex. Atomic-scale investigations successfully revealed that the binding pattern of prion-prion varies differentially in protective and pathogenic mutations with secondary structure showing distinct contrasting patterns, which could supposedly be a critical factor for differential prion behavior in protective and pathogenic mutations. Considering the reported role of an amyloid fold in prion-prion binding, the contrasting pattern has given us a lead in comprehending the role of these mutations and has been used in this study to look for small molecules that can inhibit amyloid fold for prion-prion interaction in pathogenic mutant carrying PrP. 相似文献
50.
Javid Sadri Nahand Farah Bokharaei-Salim Arash Salmaninejad Abolfazl Nesaei Fatemeh Mohajeri Azadeh Moshtzan Alireza Tabibzadeh Mohammad Karimzadeh Mohsen Moghoofei Arezo Marjani Shoeleh Yaghoubi Hossein Keyvani 《Journal of cellular physiology》2019,234(8):12188-12225
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression. 相似文献