首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   16篇
  国内免费   1篇
  299篇
  2023年   5篇
  2022年   5篇
  2021年   18篇
  2020年   6篇
  2019年   7篇
  2018年   14篇
  2017年   7篇
  2016年   10篇
  2015年   12篇
  2014年   26篇
  2013年   18篇
  2012年   27篇
  2011年   20篇
  2010年   18篇
  2009年   5篇
  2008年   20篇
  2007年   20篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有299条查询结果,搜索用时 0 毫秒
71.
In this study, mechanisms of plasmid-mediated sulfamethoxazole resistances in the clinical strains of multi-drug resistant (MDR) Shigella flexneri 2a were elucidated for the first time in Bangladesh. From 2006 to 2011, a total of 200 S. flexneri 2a strains were randomly selected from the stock of the Enteric and Food Microbiology Laboratory of icddr,b. Antimicrobial susceptibility of the strains showed 73%, 98%, 93%, 58%, 98%, 64% and 4% resistance to trimethoprim-sulfamethoxazole, nalidixic acid, ampicillin, erythromycin, tetracycline, ciprofloxacin and ceftriaxone respectively. Plasmid profiling revealed heterogeneous patterns and interestingly, all the trimethoprim-sulfamethoxazole resistant (SXTR) strains yielded a distinct 4.3 MDa plasmid compared to that of the trimethoprim-sulfamethoxazole susceptible (SXTS) strains. Curing of this 4.3 MDa plasmid resulted in the susceptibility to sulfamethoxazole alone suggesting the involvement of this plasmid in the resistance of sulfamethoxazole. Moreover, PCR analysis showed the presence of sul2 gene in SXTR strains which is absent in SXTS strains as well as in the 4.3 MDa plasmid-cured derivatives, confirming the involvement of sul2 in the resistance of sulfamethoxazole. Furthermore, pulsed-field gel electrophoresis (PFGE) analysis revealed that both the SXTR and SXTS strains were clonal. This study will significantly contributes to the knowledge on acquired drug resistance of the mostly prevalent S. flexneri 2a and further warrants continuous monitoring of the prevalence and correlation of this resistance determinants amongst the clinical isolates of Shigella and other enteric pathogens around the world to provide effective clinical management of the disease.  相似文献   
72.
73.
74.
75.
RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interference.  相似文献   
76.
Alternative bone regeneration strategies that do not rely on harvested tissue or exogenous growth factors are needed. One of the major challenges in tissue reconstruction is recreating the bone tissue microenvironment using the appropriate combination of cells, scaffold, and stimulation to direct differentiation. This study presents a bone regeneration formulation that involves the use of human adipose-derived mesenchymal stem cells (hASCs) and a three-dimensional (3D) hydrogel scaffold based on self-assembled RADA16 peptides containing superparamagnetic iron oxide nanoparticles (NPs). Although superparamagnetic NPs could be used as stimulus to manipulate the cell proliferation and differentiation, in this paper their use is explored for assisting osteogenic differentiation of hASCs in conjunction with direct stimulation by extremely low-frequency pulsed electromagnetic fields (pEMFs). Cellular morphology, proliferation, and viability, as well as alkaline phosphatase activity, calcium deposition, and osteogenic capacity were monitored for cells cultured up to 21 days in the 3D construct. The results show that the pEMFs and NPs do not have any negative effect on cell viability, but instead distinctly induced early differentiation of hASCs to an osteoblastic phenotype, when compared with cells without biophysical stimulation. This effect is attributed to synergy between the pEMFs and NPs, which may have stimulated mechanotransduction pathways, which, in turn activated biochemical signals between cells to differentiate or proliferate. This approach may offer a safe and effective option for the treatment of non-union bone fractures. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   
77.
78.
In our program to discover non-nucleoside, small molecule inhibitors of genotype 1 HCV polymerase, we investigated a series of promising analogs based on a benzothiadiazine screening hit that contains an ABCD ring system. After demonstrating that a methylsulfonylamino D-ring substituent increased the enzyme potency into the low nanomolar range, we explored a minimum core required for activity by truncating to a three-ring system. Described herein are the syntheses and structure-activity relationship of a set of inhibitors lacking the A-ring of an ABCD ring system. We observed that small aromatic rings and alkenyl groups appended to the 5-position of the B-ring were optimal, resulting in inhibitors with low nanomolar potencies.  相似文献   
79.
Sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic acid, SA) reacted with peroxynitrous acid at neutral pH with a second-order rate constant of 812 M(-1)s(-1), to yield a red product (lambda(max), 532 nm). The identical colored product could be formed with acidified decomposed peroxynitrous acid solutions or nitrite at slower rates (0.1M HCl, 8.32 M(-1)s(-1); 10% acetic acid, 0.0004 M(-1)s(-1)). The red compound is thought to be O-nitrososinapinic acid (3,5-dimethoxy-4-nitrosooxycinnamic acid) which can be formed by reaction with either peroxynitrous acid or nitrous acid. The extinction coefficient of O-nitrososinapinic acid (ONSA) was estimated to be 8419 M(-1)cm(-1) at 510 nm in 10% acetic acid and 90% acetonitrile. ONSA was also formed via NO(+) transfer from S-nitrosoglutathione (GSNO). ONSA in turn can S-nitrosate low molecular weight thiols and protein thiols. SA was also shown to act as a peroxynitrite sink as it effectively prevented the oxidation of dihydrorhodamine under physiological conditions. The fact that O-nitrososinapinic acid is stable and can be used to S-nitrosate thiol containing amino acids, peptides, and proteins makes it a potentially useful reagent in the study of S-nitrosothiol biochemistry and physiology. In addition, the relatively high extinction coefficient of O-nitrososinapinic acid means that it could be utilized as an analyte for the spectroscopic detection of peroxynitrite or NO(+)-donors in the submicromolar range.  相似文献   
80.
The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp+Cu+Zn strain (DGE50) to AmpCuZn+ strain (DGE57), producing Amp+Cu+Zn+ transconjugants (DGETC50→57) and Amp+CuZn+ transformants (DGETF50→57). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号