首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   27篇
  288篇
  2023年   4篇
  2022年   8篇
  2021年   16篇
  2020年   15篇
  2019年   24篇
  2018年   18篇
  2017年   16篇
  2016年   13篇
  2015年   12篇
  2014年   21篇
  2013年   15篇
  2012年   18篇
  2011年   12篇
  2010年   11篇
  2009年   11篇
  2008年   11篇
  2007年   11篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有288条查询结果,搜索用时 15 毫秒
231.

Background

Chronic pancreatitis (CP) is a progressive disorder resulting in the destruction and fibrosis of the pancreatic parenchyma which ultimately leads to impairment of the endocrine and exocrine functions. Dimethyl Fumarate (DMF) was recently approved by FDA for treatment of patients with multiple sclerosis. DMF''s unique anti-oxidant and anti-inflammatory properties make it an interesting drug to test on other inflammatory conditions. This study was undertaken to determine the effects of DMF on islet cells and non-endocrine tissue in a rodent model of L-Arginine-induced CP.

Methods

Male Wistar rats fed daily DMF (25 mg/kg) or vehicle by oral gavage were given 5 IP injections of L-Arginine (250 mg/100 g×2, 1 hr apart). Rats were assessed with weights and intra-peritoneal glucose tolerance tests (IPGTT, 2 g/kg). Islets were isolated and assessed for islet mass and viability with flow cytometry. Non-endocrine tissue was assessed for histology, myeloperoxidase (MPO), and lipid peroxidation level (MDA). In vitro assessments included determination of heme oxygenase (HO-1) protein expression by Western blot.

Results

Weight gain was significantly reduced in untreated CP group at 6 weeks. IPGTT revealed significant impairment in untreated CP group and its restoration with DMF therapy (P <0.05). Untreated CP rats had pancreatic atrophy, severe acinar architectural damage, edema, and fatty infiltration as well as elevated MDA and MPO levels, which were significantly improved by DMF treatment. After islet isolation, the volume of non-endocrine tissue was significantly smaller in untreated CP group. Although islet counts were similar in the two groups, islet viability was significantly reduced in untreated CP group and improved with DMF treatment. In vitro incubation of human pancreatic tissue with DMF significantly increased HO-1 expression.

Conclusion

Administration of DMF attenuated L-Arginine-induced CP and islet function in rats. DMF treatment could be a possible strategy to improve clinical outcome in patients with CP.  相似文献   
232.
233.
Despite being of the myeloid lineage, acute myeloid leukaemia (AML) blasts are of low immunogenicity, probably because they lack the costimulatory molecule CD80 and secrete immunosuppressive factors. We have previously shown that in vitro stimulation of autologous peripheral blood mononuclear cells (PBMCs) with primary AML cells modified to express CD80 and IL-2 promotes proliferation, secretion of Th1 cytokines and expansion of activated CD8+ T cells. In this study, we show that allogeneic effector cells (from a healthy donor or AML patients) when stimulated with IL-2/CD80 modified AML blasts were able to induce the lysis of unmodified AML blasts. Effector cells stimulated with IL-2/CD80AML blasts had higher lytic activity than cells stimulated with AML cells expressing CD80 or IL-2 alone. Similarly, AML patient PBMCs primed with autologous IL-2/CD80 AML cells had a higher frequency of IFN-γ secreting cells and show cytotoxicity against autologous, unmodified blasts. Crucially, the response appears to be leukaemia specific, since stimulated patient PBMCs show higher frequencies of IFN-γ secreting effector cells in response to AML blasts than to remission bone marrow cells from the same patients. Although studied in a small number of heterogeneous patient samples, the data are encouraging and support the continuing development of vaccination for poor prognosis AML patients with autologous cells genetically modified to express IL-2/CD80.  相似文献   
234.
235.
Biological Trace Element Research - Selenium is known to be a neuroprotective agent in respect to a number of neuronal diseases and pain. The aim of this study was to evaluate the neuroprotective...  相似文献   
236.

Background and Purpose

Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated.

Methods

We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors.

Results

A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5.

Conclusions

In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.  相似文献   
237.

Background

Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses.

Objective

To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC.

Methods

Semi-allogeneic DC were generated from the F1 progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8+ and CD4+ T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo.

Results

In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8+ OT-I transgenic T-cells, primed naïve CD4+ OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4+ response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival.

Conclusion

Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.  相似文献   
238.
Immunotherapeutic strategies are increasingly being explored as a method of enhancing anti-tumour immune responses in patients with acute myeloid leukaemia (AML). Regulatory CD4+ T cells (Tregs) suppress effector T and natural killer (NK) cells and therefore pose a potential challenge to the efficacy of immunotherapy. AML cells transduced with a lentivirus expressing CD80 (B7.1) and IL2 (LV-CD80/IL2) are capable of stimulating T and NK cell cytotoxicity in vitro. This study examines the effect of CD80/IL2 modified AML cells on Treg number and function. We report a significant increase in the number of CD8+ T cells (P = 0.046) CD3CD56+ NK cells (P = 0.028) and CD3+CD4+CD25highFoxp3+ Tregs (P = 0.043) following stimulation for 7 days with allogeneic LV-CD80/IL2 AMLs. In contrast, autologous LV-CD80/IL2 AML cell cultures provide a weaker stimulation with a lower number of CD8+ T cells (P = 0.011) and no change in NK cell or Treg numbers. However, an increase in cytotoxic CD8+ T cells and NK cells are detected following both allogeneic and autologous LV-CD80/IL2 stimulation as demonstrated by an increase in IFN-γ and CD107a expression. Despite the presence of increased numbers of Tregs with suppressive activity in a subset of cultures, increased lysis of unmodified AMLs was still achieved following allogeneic (day 0, 2.2%; day 7, 20.4%) and more importantly, autologous LV-CD80/IL2 culture in which AML patients had recently received intensive chemotherapy (day 0, 0%; day 7, 16%). Vaccination with LV-CD80/IL2 therefore provides a potential strategy to enhance anti-leukaemia immune responses without a concomitant stimulation of Treg-mediated inhibition of cytotoxic immunological responses.  相似文献   
239.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.  相似文献   
240.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号