首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   48篇
  2023年   5篇
  2022年   12篇
  2021年   22篇
  2020年   20篇
  2019年   26篇
  2018年   23篇
  2017年   21篇
  2016年   21篇
  2015年   26篇
  2014年   39篇
  2013年   23篇
  2012年   45篇
  2011年   50篇
  2010年   21篇
  2009年   15篇
  2008年   20篇
  2007年   15篇
  2006年   13篇
  2005年   16篇
  2004年   13篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1968年   4篇
  1957年   1篇
排序方式: 共有510条查询结果,搜索用时 15 毫秒
101.
The most commonly used DNA transfection method, which employs the calcium phosphate co-precipitation of the donor DNA, involves several discrete steps (1,2). These include the uptake of the donor DNA by the recipient cells, the transport of the DNA to the nucleus, transient expression prior to integration into the host cell genome, concatenation and integration of the transfected DNA into the host cell genome and finally the stable expression of the integrated genes (2,3). Both the concatenation and the integration of the donor DNA into the host genome involve the formation and ligation of DNA strand-breaks. In the present study we demonstrate that the nuclear enzyme, adenosine diphosphoribosyl transferase (ADPRT, E.C. 2.4.2.30), which is dependent on the presence of DNA strand breaks for its activity (4,5) and necessary for the efficient ligation of DNA strand-breaks in eukaryotic cells (4,6), is required for the integration of donor DNA into the host genome. However, ADPRT activity does not influence the uptake of DNA into the cell, its episomal maintenance or replication, nor its expression either before or after integration into the host genome. These observations strongly suggest the involvement of ADPRT activity in eukaryotic DNA recombination events.  相似文献   
102.
103.
Based on their lithologic characteristics and stratal geometries, the Middle Cambrian Fasham and Deh-Sufiyan Formations of the lower Mila Group in the Central Alborz, northern Iran, exhibit 39 lithofacies representing several supratidal to deep subtidal facies belts. The siliciclastic successions of the Fasham Formation are divided into two facies associations, suggesting deposition in a tide-dominated, open-mouthed estuarine setting. The mixed, predominantly carbonate successions of the Deh-Sufiyan Formation are grouped into ten facies associations. Four depositional zones are recognized on the Deh-Sufiyan ramp: basinal, outer ramp (deep subtidal associations), mid ramp (shallow subtidal to lower intertidal associations), and inner ramp (shoal and upper intertidal to supratidal associations). These facies associations are arranged in small-scale sedimentary cycles, i.e., peritidal, shallow subtidal, and deep subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. Systematic changes in stacking pattern (cycle thickness, cycle type, and facies proportion) allow to reconstruct long-term changes in sea-level. Six large-scale cycles (S1–S6) have been identified and are interpreted as depositional sequences showing retrogradational (transgressive systems tract) and progradational (highstand systems tract) packages of facies associations. The six depositional sequences provide the basis for inter-regional sequence stratigraphic correlations and have been controlled by eustatic sea-level changes.  相似文献   
104.
Rapid and efficient procedures for the detection of sequence polymorphisms are essential for chromosomal walking and mutation detection analyses. While DNA chip technology and denaturing high-performance liquid chromatography (DHPLC) are the methods of choice for large scale facilities, small laboratories are dependent on simple ready-to-use techniques. We show that heteroduplex analysis on high resolution gel matrices efficiently detects sequence polymorphism differing as little as a single base pair (e.g. single-nucleotide polymorphism, SNP) with standard laboratory equipment. Furthermore, the matrices also discerned differences between homoduplexes, a prerequisite for co-dominant markers. The markers thus generated are referred to as duplex analysis markers. We designed PCR primers for 36 Arabidopsis thaliana loci ranging in length from 230 bp to 1000 bp. Among three ecotypes, more than half ( n = 19) of the loci examined were polymorphic; five of which contained three different alleles. This simple, high resolution technique can be used to rapidly convert sequence tagged sites into co-dominant PCR-based molecular markers for fine-scale mapping studies and chromosomal walking strategies as well as for the detection of mutations in particular genes.  相似文献   
105.
106.
107.
Glioblastoma multiforme (GBM) is a unique aggressive tumor and mostly develops in the brain, while rarely spreading out of the central nervous system. It is associated with a high mortality rate; despite tremendous efforts having been made for effective therapy, tumor recurrence occurs with high prevalence. To elucidate the mechanisms that lead to new drug discovery, animal models of tumor progression is one of the oldest and most beneficial approaches to not only investigating the aggressive nature of the tumor, but also improving preclinical research. It is also a useful tool for predicting novel therapies' effectiveness as well as side effects. However, there are concerns that must be considered, such as the heterogeneity of tumor, biological properties, pharma dynamic, and anatomic shapes of the models, which have to be similar to humans as much as possible. Although several methods and various species have been used for this approach, the real recapitulation of the human tumor has been left under discussion. The GBM model, which has been verified in this study, has been established by using the Rat C6 cell line. By exploiting bioinformatic tools, the similarities between aberrant gene expression and pathways have been predicted. In this regard, 610 common genes and a number of pathways have been detected. Moreover, while magnetic resonance imaging analysis enables us to compare tumor features between these two specious, pathological findings provides most of the human GBM characteristics. Therefore, the present study provides genomics, pathologic, and imaging evidence for showing the similarities between human and rat GBM models.  相似文献   
108.
Homeostasis of proteins involved in contractility of individual cardiomyocytes and those coupling adjacent cells is of critical importance as any abnormalities in cardiac electrical conduction may result in cardiac irregular activity and heart failure. Bcl2-associated athanogene 3 (BAG3) is a stress-induced protein whose role in stabilizing myofibril proteins as well as protein quality control pathways, especially in the cardiac tissue, has captured much attention. Mutations of BAG3 have been implicated in the pathogenesis of cardiac complications such as dilated cardiomyopathy. In this study, we have used an in vitro model of neonatal rat ventricular cardiomyocytes to investigate potential impacts of BAG3 on electrophysiological activity by employing the microelectrode array (MEA) technology. Our MEA data showed that BAG3 plays an important role in the cardiac signal generation as reduced levels of BAG3 led to lower signal frequency and amplitude. Our analysis also revealed that BAG3 is essential to the signal propagation throughout the myocardium, as the MEA data-based conduction velocity, connectivity degree, activation time, and synchrony were adversely affected by BAG3 knockdown. Moreover, BAG3 deficiency was demonstrated to be connected with the emergence of independently beating clusters of cardiomyocytes. On the other hand, BAG3 overexpression improved the activity of cardiomyocytes in terms of electrical signal amplitude and connectivity degree. Overall, by providing more in-depth analyses and characterization of electrophysiological parameters, this study reveals that BAG3 is of critical importance for electrical activity of neonatal cardiomyocytes.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号