首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1083篇
  免费   57篇
  国内免费   4篇
  2023年   11篇
  2022年   26篇
  2021年   40篇
  2020年   27篇
  2019年   45篇
  2018年   40篇
  2017年   25篇
  2016年   48篇
  2015年   54篇
  2014年   68篇
  2013年   84篇
  2012年   87篇
  2011年   78篇
  2010年   29篇
  2009年   43篇
  2008年   43篇
  2007年   48篇
  2006年   50篇
  2005年   38篇
  2004年   25篇
  2003年   33篇
  2002年   26篇
  2001年   15篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   11篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   9篇
  1984年   8篇
  1982年   5篇
  1981年   6篇
  1979年   6篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1972年   10篇
  1970年   4篇
  1969年   4篇
  1966年   3篇
排序方式: 共有1144条查询结果,搜索用时 15 毫秒
31.
Journal of Plant Growth Regulation - Despite the plethora of published reports on ameliorative effects of exogenously applied salicylic acid (SA) to plants under salt stress, a critical role of SA...  相似文献   
32.
Abstract

This study identifies and validates hexokinase type 4 (HK4), an isozyme of hexokinase in the liver and pancreas, as an important target of C2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (βdGT), a xanthone glucoside suggested to have antidiabetic property. In the study, we applied the computational pipeline of molecular docking followed by the molecular dynamics simulations to shortlist potential βdGT protein targets. The analysis of protein dynamics and the binding free energy (ΔG) led us to the identification of HK4 as a key βdGT target, whereby the binding mode and domain dynamics suggested the activator function of βdGT. βdGT bound to the allosteric site of the isozyme ~13?Å away from the substrate (glucose)-binding site. The binding free energy of the ligand-protein complex was energetically feasible (ΔG, –41.61?kcal/mol) and the cleft angle deviation between the two (small and large) domains of HK4 revealed differential HK4 dynamics in response to βdGT binding. 3D structure analysis of the isozyme-ligand complex highlighted the role of Arg63, Glu67 and Lys458 in ligand stabilization and hydrophobic interactions mediated by Tyr214 and Met235. Experimental validation of the results of computational analysis confirmed the activator function of βdGT on HK4. The study has implication in diabetes as βdGT may be used to lower the blood glucose level by activating hepatic and pancreatic hexokinase without the risk of hypoglycemia.

Communicated by Ramaswamy H. Sarma  相似文献   
33.
Among arthropod pests, mites are responsible for considerable damage to crops, humans and other animals. However, detailed physiological data on these organisms remain sparse, mainly because of their small size but possibly also because of their extreme diversity. Focusing on intestinal proteases, we draw together information from three distinct mite species that all feed on skin but have separately adapted to a free-living, a strictly ecto-parasitic and a parasitic lifestyle. A wide range of studies involving immunohistology, molecular biology, X-ray crystallography and enzyme biochemistry of mite gut proteases suggests that these creatures have diverged considerably as house dust mites, sheep scab mites and scabies mites. Each species has evolved a particular variation of a presumably ancestral repertoire of digestive enzymes that have become specifically adapted to their individual environmental requirements.  相似文献   
34.
35.
All TGF-beta family members have a prodomain that is important for secretion. Lack of secretion of a TGF-beta family member GDF5 is known to underlie some skeletal abnormalities, such as brachydactyly type C that is characterized by a huge and unexplained phenotypic variability. To search for potential phenotypic modifiers regulating secretion of GDF5, we compared cells overexpressing wild type (Wt) GDF5 and GDF5 with a novel mutation in the prodomain identified in a large Pakistani family with Brachydactyly type C and mild Grebe type chondrodyslplasia (c527T>C; p.Leu176Pro). Initial in vitro expression studies revealed that the p.Leu176Pro mutant (Mut) GDF5 was not secreted outside the cells. We subsequently showed that GDF5 was capable of forming a complex with latent transforming growth factor binding proteins, LTBP1 and LTBP2. Furthermore, secretion of LTBP1 and LTBP2 was severely impaired in cells expressing the Mut-GDF5 compared to Wt-GDF5. Finally, we demonstrated that secretion of Wt-GDF5 was inhibited by the Mut-GDF5, but only when LTBP (LTBP1 or LTBP2) was co-expressed. Based on these findings, we suggest a novel model, where the dosage of secretory co-factors or stabilizing proteins like LTBP1 and LTBP2 in the microenvironment may affect the extent of GDF5 secretion and thereby function as modifiers in phenotypes caused by GDF5 mutations.  相似文献   
36.
ABSTRACT

Inhibitors of monoamine oxidase (MAO)-B have been used for many years in the therapy of Parkinson’s disease (PD). Owing to the safety concerns of the currently used agents, the discovery of novel scaffolds is of considerable interest. MAO-B inhibitory potential of rutin, a flavonoid derived from natural sources, has been established in experimental findings. Hence, the current study seeks to examine the interactions between rutin and crystal structure of human MAO-B enzyme. Molecular docking calculations, as well as molecular dynamics simulations, were employed to investigate the binding mode and the stability of the rutin/MAO-B complex. Energies of highest occupied/lowest unoccupied molecular orbitals were computed through DFT studies and used to calculate electron affinity, hardness, chemical potential, electronegativity, and electrophilicity index in order to investigate the capability of these parameters to influence the ligand–receptor interactions. It was found that rutin traverses both the entrance cavity and the substrate cavity, forcing the Ile-199 ‘gate’ to rotate into its open conformation. It results in the fusion of the two cavities of the MAO-B binding site and directly leads to better binding interactions. Results of the current study can be used for lead modification and development of novel drugs for the treatment of PD.  相似文献   
37.
Toll-like receptor 2 (TLR2) serves as a co-stimulatory receptor for human T cells by enhancing T cell receptor (TCR)-induced cytokine production and proliferation. However, it is unknown where signals from the TCR and TLR2 converge to enhance T cell activation. To address this gap, we examined changes in TCR-induced signaling following concurrent TLR2 activation in human T cells. Both proximal TCR-mediated signaling and early NFκB activation were not enhanced by TCR andTLR2 co-activation, potentially due to the association of TLR2 with TLR10. Instead, TLR2 co-induction did augment Akt and Erk1/Erk2 activation in human T cells. These findings demonstrate that TLR2 activates distinct signaling pathways in human T cells and suggest that alterations in expression of TLR2 co-receptors may contribute to aberrant T cell responses.  相似文献   
38.
ABSTRACT

Several studies have focused on determining the effect of chronotype and learning approach on academic achievement separately indicating that morning types have an academic advantage over the evening types and so have the deep learners over the surface learners. But, surprisingly none have assessed the possible relationship between chronotype and learning approach. So, the current study aimed to evaluate this association and their individual influence on academic performance as indicated by the Cumulative Grade Point Average (CGPA) as well as the effect of their interaction on academic performance. The study included 345 undergraduate medical students who responded to reduced Morningness-Eveningness Questionnaire and Biggs Revised Two-Factor Study Process Questionnaire. Morning types indulged in deep learning while evening types in surface learning. Morning and evening types did not differ on academic performance but deep learners had better academic outcomes than their counterparts. The interaction between chronotype and learning approach was significant on determining academic achievement. Our findings gave the impression that chronotype could have an impact on academic performance not directly but indirectly through learning approaches.  相似文献   
39.
Low-density quantitative real-time PCR (qPCR) arrays are often used to profile expression patterns of microRNAs in various biological milieus. To achieve accurate analysis of expression of miRNAs, non-biological sources of variation in data should be removed through precise normalization of data. We have systematically compared the performance of 19 normalization methods on different subsets of a real miRNA qPCR dataset that covers 40 human tissues. After robustly modeling the mean squared error (MSE) in normalized data, we demonstrate lower variability between replicates is achieved using various methods not applied to high-throughput miRNA qPCR data yet. Normalization methods that use splines or wavelets smoothing to estimate and remove Cq dependent non-linearity between pairs of samples best reduced the MSE of differences in Cq values of replicate samples. These methods also retained between-group variability in different subsets of the dataset.  相似文献   
40.
Neural synchronization is considered as an important mechanism for information processing. In addition, based on recent neurophysiologic findings, it is believed that astrocytes regulate the synaptic transmission of neuronal networks. Therefore, the present study focused on determining the functional contribution of astrocytes in neuronal synchrony using both computer simulations and extracellular field potential recordings. For computer simulations, as a first step, a minimal network model is constructed by connecting two Morris-Lecar neuronal models. In this minimal model, astrocyte-neuron interactions are considered in a functional-based procedure. Next, the minimal network is extended and a biologically plausible neuronal population model is developed which considers functional outcome of astrocyte-neuron interactions too. The employed structure is based on the physiological and anatomical network properties of the hippocampal CA1 area. Utilizing these two different levels of modeling, it is demonstrated that astrocytes are able to change the threshold value of transition from synchronous to asynchronous behavior among neurons. In this way, variations in the interaction between astrocytes and neurons lead to the emergence of synchronous/asynchronous patterns in neural responses. Furthermore, population spikes are recorded from CA1 pyramidal neurons in rat hippocampal slices to validate the modeling results. It demonstrates that astrocytes play a primary role in neuronal firing synchronicity and synaptic coordination. These results may offer a new insight into understanding the mechanism by which astrocytes contribute to stabilizing neural activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号