首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1732篇
  免费   209篇
  2021年   18篇
  2020年   16篇
  2019年   20篇
  2018年   23篇
  2017年   15篇
  2016年   31篇
  2015年   52篇
  2014年   64篇
  2013年   79篇
  2012年   83篇
  2011年   73篇
  2010年   51篇
  2009年   51篇
  2008年   58篇
  2007年   63篇
  2006年   52篇
  2005年   59篇
  2004年   60篇
  2003年   41篇
  2002年   63篇
  2001年   49篇
  2000年   76篇
  1999年   66篇
  1998年   30篇
  1997年   19篇
  1996年   32篇
  1995年   24篇
  1994年   29篇
  1993年   14篇
  1992年   36篇
  1991年   38篇
  1990年   47篇
  1989年   37篇
  1988年   35篇
  1987年   36篇
  1986年   33篇
  1985年   36篇
  1984年   24篇
  1983年   26篇
  1982年   11篇
  1981年   13篇
  1979年   17篇
  1978年   18篇
  1977年   14篇
  1976年   13篇
  1975年   13篇
  1974年   11篇
  1973年   14篇
  1972年   13篇
  1971年   10篇
排序方式: 共有1941条查询结果,搜索用时 15 毫秒
981.
982.
Abstract Beetles in the weevil subfamilies Scolytinae and Platypodinae are unusual in that they burrow as adults inside trees for feeding and oviposition. Some of these beetles are known as ambrosia beetles for their obligate mutualisms with asexual fungi—known as ambrosia fungi—that are derived from plant pathogens in the ascomycete group known as the ophiostomatoid fungi. Other beetles in these subfamilies are known as bark beetles and are associated with free‐living, pathogenic ophiostomatoid fungi that facilitate beetle attack of phloem of trees with resin defenses. Using DNA sequences from six genes, including both copies of the nuclear gene encoding enolase, we performed a molecular phylogenetic study of bark and ambrosia beetles across these two subfamilies to establish the rate and direction of changes in life histories and their consequences for diversification. The ambrosia beetle habits have evolved repeatedly and are unreversed. The subfamily Platypodinae is derived from within the Scolytinae, near the tribe Scolytini. Comparison of the molecular branch lengths of ambrosia beetles and ambrosia fungi reveals a strong correlation, which a fungal molecular clock suggests spans 60 to 21 million years. Bark beetles have shifted from ancestral association with conifers to angiosperms and back again several times. Each shift to angiosperms is associated with elevated diversity, whereas the reverse shifts to conifers are associated with lowered diversity. The unusual habit of adult burrowing likely facilitated the diversification of these beetle‐fungus associations, enabling them to use the biomass‐rich resource that trees represent and set the stage for at least one origin of eusociality.  相似文献   
983.
The new antitumor trinuclear platinum compound [(trans-PtCl(NH(3))(2))(2)mu-trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)](4+) (designated as BBR3464) is currently in phase II clinical trials. DNA is generally considered the major pharmacological target of platinum drugs. As such it is of considerable interest to understand the patterns of DNA damage. The bifunctional DNA binding of BBR3464 is characterized by the rapid formation of long range intra- and interstrand cross-links. We examined how the structures of the various types of the intrastrand cross-links of BBR3464 affect conformational properties of DNA, and how these adducts are recognized by high mobility group 1 protein and removed from DNA during in vitro nucleotide excision repair reactions. The results have revealed that intrastrand cross-links of BBR3464 create a local conformational distortion, but none of these cross-links results in a stable curvature. In addition, we have observed no recognition of these cross-links by high mobility group 1 proteins, but we have observed effective removal of these adducts from DNA by nucleotide excision repair. These results suggest that the processing of the intrastrand cross-links of BBR3464 in tumor cells sensitive to this drug may not be relevant to its antitumor effects. Hence, polynuclear platinum compounds apparently represent a novel class of platinum anticancer drugs acting by a different mechanism than cisplatin and its analogues.  相似文献   
984.
The existence of Delta 4 fatty acid desaturation in the biosynthesis of docosahexanoic acid (DHA) has been questioned over the years. In this report we describe the identification from Thraustochytrium sp. of two cDNAs, Fad4 and Fad5, coding for Delta 4 and Delta 5 fatty acid desaturases, respectively. The Delta 4 desaturase, when expressed in Saccharomyces cerevisiae, introduced a double bond at position 4 of 22:5(n-3) and 22:4(n-6) resulting in the production of DHA and docosapentanoic acid. The enzyme, when expressed in Brassica juncea under the control of a constitutive promoter, desaturated the exogenously supplied substrate 22:5(n-3), resulting in the production of DHA in vegetative tissues. These results support the notion that DHA can be synthesized via Delta 4 desaturation and suggest the possibility that DHA can be produced in oilseed crops on a large scale.  相似文献   
985.
C A Dougherty  C R Sage  A Davis  K W Farrell 《Biochemistry》2001,40(51):15725-15732
We introduced a threonine-to-glycine point mutation at position 143 in the "tubulin signature motif" 140Gly-Gly-Gly-Thr-Gly-Ser-Gly146 of Saccharomyces cerevisiae beta-tubulin. In an electron diffraction model of the tubulin dimer, this sequence comes close to the phosphates of a guanine nucleotide bound in the beta-tubulin exchangeable E site. Both the GTP-binding affinity and the microtubule (MT)-dependent GTPase activity of tubulin isolated from haploid tub2-T143G mutant cells were reduced by at least 15-fold, compared to tubulin isolated from control wild-type cells. The growing and shortening dynamics of MTs assembled from alphabeta:Thr143Gly-mutated dimers were also strongly suppressed, compared to control MTs. The in vitro properties of the mutated MTs (slower growing and more stable) are consistent with the effects of the tub2-T143G mutation in haploid cells. The average length of MT spindles in large-budded mutant cells was only 3.7 +/- 0.2 microm, approximately half of the size of MT arrays in large-budded wild-type cells (average length = 7.1 +/- 0.4 microm), suggesting that there is a delay in mitosis in the mutant cells. There was also a higher proportion of large-budded cells with unsegregated nuclei in mutant cultures (30% versus 12% for wild-type cells), again suggesting such a delay. The results show that beta:Thr143 of the tubulin signature motif plays an important role in GTP binding and hydrolysis by the beta-tubulin E site and support the idea that tubulins belong to a family of proteins within the GTPase superfamily that are structurally distinct from the classic GTPases, such as EF-Tu and p21(ras). The data also suggest that MT dynamics are critical for MT function in yeast cells and that spindle MT assembly and disassembly could be coordinated with other cell-cycle events by regulating beta-tubulin GTPase activity.  相似文献   
986.
To determine its potential for interacting with other components of the casein micelle, the N-terminal section of bovine s1-casein-B, residues 1-23, was investigated with nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies, and molecular modeling. NMR data were not consistent with conventional -helical or -sheet structures, but changes in N-H proton chemical shifts suggested thermostable structures. Both CD and FTIR predicted a range of secondary structures for the peptide (30–40% turns, 25–30% extended) that were highly stable from 5°C to 25°C. Other conformational elements, such as loops and polyproline II helix, were indicated by FTIR only. Molecular dynamics simulation of the peptide predicted 32% turns and 27% extended, in agreement with FTIR and CD predictions and consistent with NMR data. This information is interpreted in accord with recent spectroscopic evidence regarding the nature of unordered conformations, leading to a possible role of s1-casein (1–23) in facilitating casein-casein interactions.  相似文献   
987.
A strategy of mutagenesis followed by yeast two-hybrid assay was used to determine the sites on the WD-repeat protein Receptor for Activated C Kinase 1 (RACK1) necessary for it to interact with the cAMP-specific phosphodiesterase isoform PDE4D5. Analysis of deletion mutations demonstrated that WD-repeats 5-7, inclusively, of RACK1 contained the major site for interaction with PDE4D5. A reverse two-hybrid screen focusing on WD-repeats 5-7 of RACK1 isolated 11 single amino acid mutations from within this region that blocked the interaction. The ability of these mutations to block the interaction was confirmed by "pull-down" assays using bacterially expressed glutathione-S-transferase (GST)-RACK1 and mammalian cell-expressed PDE4D5. A model of RACK1 structure, based on the structural similarity of RACK1 to other beta-propeller WD-repeat proteins, indicated that the majority of the amino acids identified by mutagenesis are clustered in a discrete surface of RACK1. We propose that this surface of RACK1 is the major site for its interaction with the unique amino-terminal region of PDE4D5.  相似文献   
988.
In this study we describe cloning and expression of CSAL2, a second member of the spalt gene family in chick. All spalt proteins are characterized by the presence of multiple zinc-finger motifs, which are highly conserved. Mutations in HSAL1, a human spalt gene result in Townes-Brocks syndrome (TBS). We show here that CSAL2 is expressed in many of the tissues affected in TBS, including neural tissue, limb buds, mesonephros and cloaca.  相似文献   
989.
Two homologous cDNAs, CoFad2 and CoFac2, were isolated from a Calendula officinalis developing seed by a polymerase chain reaction-based cloning strategy. Both sequences share similarity to FAD2 desaturases and FAD2-related enzymes. In C. officinalis plants CoFad2 was expressed in all tissues tested, whereas CoFac2 expression was specific to developing seeds. Expression of CoFad2 cDNA in yeast (Saccharomyces cerevisiae) indicated it encodes a Delta12 desaturase that introduces a double bond at the 12 position of 16:1(9Z) and 18:1(9Z). Expression of CoFac2 in yeast revealed that the encoded enzyme acts as a fatty acid conjugase converting 18:2(9Z, 12Z) to calendic acid 18:3(8E, 10E, 12Z). The enzyme also has weak activity on the mono-unsaturates 16:1(9Z) and 18:1(9Z) producing compounds with the properties of 8,10 conjugated dienes.  相似文献   
990.
Farrell A  Quilty B 《Biodegradation》1999,10(5):353-362
A mixed microbial community, specially designed todegrade a wide range of substituted aromaticcompounds, was examined for its ability to degrademono-chlorophenols as sole carbon source in aerobicbatch cultures. The mixed culture degraded 2-, 3-, and4 -chlorophenol (1.56 mM) via a meta- cleavagepathway. During the degradation of 2- and3-chlorophenol by the mixed culture, 3-chlorocatecholproduction was observed. Further metabolism was toxicto cells as it led to inactivation of the catechol2,3-dioxygenase enzyme upon meta- cleavage of3-chlorocatechol resulting in incomplete degradation.Inactivation of the meta- cleavage enzyme led toan accumulation of brown coloured polymers, whichinterfered with the measurement of cell growth usingoptical denstiy. Degradation of 4-chlorophenol by themixed culture led to an accumulation of5-chloro-2-hydroxymuconic semialdehyde, themeta- cleavage product of 4-chlorocatechol. Theaccumulation of this compound did not interfere withthe measurement of cell growth using optical density.5-chloro-2-hydroxymuconic semialdehyde was furthermetabolized by the mixed culture with a stoichiometricrelease of chloride, indicating complete degradationof 4-chlorophenol by the mixed culture via ameta- cleavage pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号