首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   90篇
  2019年   5篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   13篇
  2012年   18篇
  2011年   17篇
  2010年   13篇
  2009年   7篇
  2008年   15篇
  2007年   15篇
  2006年   12篇
  2005年   15篇
  2004年   6篇
  2003年   8篇
  2002年   11篇
  2001年   9篇
  2000年   10篇
  1999年   13篇
  1998年   13篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   8篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   7篇
  1979年   3篇
  1978年   9篇
  1977年   3篇
  1974年   4篇
  1971年   5篇
  1969年   3篇
  1968年   5篇
  1967年   3篇
  1966年   3篇
  1956年   3篇
  1930年   3篇
  1929年   3篇
  1928年   3篇
排序方式: 共有409条查询结果,搜索用时 46 毫秒
61.
Plants of Zea mays were grown with different concentrations of nitrate (0.6, 4, 12, and 24 millimolar) and phosphate (0.04, 0.13, 0.53, and 1.33 millimolar) supplied to the roots, photon flux densities (0.12, 0.5, and 2 millimoles per square meter per second), and ambient partial pressures of CO2 (305 and 610 microbars). Differences in mineral nutrition and irradiance led to a large variation in rate of CO2 assimilation per unit leaf area (A, 11 to 58 micromoles per square meter per second) when measured under standard conditions. The variation was shown, with the plants that had received different amounts of nitrate, to be related to variations in the nitrogen and chlorophyll contents, and phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylase activities per unit leaf area. Irrespective of growth treatment, A and leaf conductance to CO2 transfer (g), measured under standard conditions were in almost constant proportion, implying that intercellular partial pressure of CO2 (pi), was almost constant at 95 microbars. The same proportionality was maintained as A and g increased in an initially nitrogen-deficient plant that had been supplied with abundant nitrate. It was shown that pi measured at a given ambient partial pressure was not affected by the ambient partial pressure at which the plants had been grown, although it was different when measured at different ambient partial pressures. This suggests that the close coupling between A and g in these experiments is not associated with sensitivity of stomata to change in pi.

Similar, though less comprehensive, experiments were done with Gossypium hirsutum, and yielded similar conclusions, except that the proportionality between A and g at normal ambient partial pressure of CO2 implied Pi ≈ 200 microbars.

  相似文献   
62.
63.
Seedling roots of Pseudotsuga menziesii were colonized with three monokaryotic isolates and one dikaryotic isolate of Laccaria bicolor to assess the effect of fungal genotype on ectomycorrhiza formation. Ectomycorrhizas resulting from colonization by the dikaryotic isolate had a multilayered mantle and a cortical Hartig net. One monokaryotic isolate (ss7) formed ectomycorrhizas comparable in anatomy to those induced by the dikaryotic isolate. Two other monokaryotic isolates (ss5, ss1) failed to form mantles or Hartig nets. Roots colonized by these isolates developed characteristics indicating an incompatible reaction.  相似文献   
64.
Transgenic Flaveria bidentis (a C4 species) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were used to examine the relationship between the CO2 assimilation rate, Rubisco content, and carbon isotope discrimination. Reduction in the amount of Rubisco in the transgenic plants resulted in reduced CO2 assimilation rates and increased carbon isotope discrimination of leaf dry matter. The H2O exchange was similar in transgenic and wild-type plants, resulting in higher ratios of intercellular to ambient CO2 partial pressures. Carbon isotope discrimination was measured concurrently with CO2 and H2O exchange on leaves of the control plants and T1 progeny with a 40% reduction in Rubisco. From the theory of carbon isotope discrimination in the C4 species, we conclude that the reduction in the Rubisco content in the transgenic plants has led to an increase in bundle-sheath CO2 concentration and CO2 leakage from the bundle sheath; however, some down-regulation of the C4 cycle also occurred.  相似文献   
65.
Megalin (gp330) is a member of the low-density lipoprotein receptor gene family. Like other members of the family, it is an endocytic receptor that binds a number of specific ligands. Megalin also binds the receptor-associated protein (RAP) that serves as an exocytic traffic chaperone and inhibits ligand binding to the receptor. To investigate the fate of megalin/RAP complexes, we bound RAP glutathione-S-transferase fusion protein (RAP-GST) to megalin at the surface of L2 yolk sac carcinoma cells and followed the trafficking of the complexes by immunofluorescence and immunogold labeling and by their distribution on Percoll gradients. We show that megalin/RAP-GST complexes, which are internalized via clathrin-coated pits, are delivered to early endosomes where they accumulate during an 18 degrees C temperature block and colocalize with transferrin and transferrin receptor. Upon release from the temperature block, the complexes travel to late endosomes where they colocalize with rab7 and can be coprecipitated with anti-RAP-GST antibodies. Dissociation of the complex occurs in late endosomes and is most likely triggered by the low pH (approximately 5.5) of this compartment. RAP is then rapidly delivered to lysosomes and degraded whereas megalin is recycled to the cell surface. When the ligand, lipoprotein lipase, was bound to megalin, the receptor was found to recycle through early endosomes. We conclude that in contrast to receptor/ligand complexes, megalin/RAP complexes traffic through late endosomes, which is a novelty for members of the low-density lipoprotein receptor gene family.  相似文献   
66.
The intracellular sites where proteolytic processing of pro-ACTH/endorphin or POMC take place have not yet been reliably identified. We have used affinity-purified antisera that recognize only the products of POMC processing and immunoelectron microscopy to identify the compartments of rat pituitary corticotropes and mouse AtT-20 cells in which cleavage occurs. Immunoperoxidase labeling of cryostat sections and immunogold labeling of ultrathin frozen sections were used for localization of the processing sites. By both procedures we detected processed peptides in Golgi cisternae and secretion granules. Within the Golgi, labeling was limited to the last or transmost cisterna and was most concentrated in its dilated rims which contain condensing secretory protein. No labeling of other Golgi cisternae was seen. All Golgi cisternae were labeled, however, when antisera that recognize unprocessed POMC were used for immunolabeling. We conclude that in AtT-20 and rat pituitary cells: 1) processing of POMC through at least two endo- and exoproteolytic cleavage steps and alpha-amidation of joining peptide begin in the trans Golgi subcompartment; 2) no detectable processing takes place before POMC reaches the trans Golgi cisterna; and 3) this Golgi cisterna as well as secretion granules contain the active enzymes necessary for proteolytic processing and alpha-amidation.  相似文献   
67.
A new procedure has been developed for dissociating anterior pituitary tissue and producing a viable suspension of single cells. The procedure involves incubation of small tissue blocks in 1 mg/ml trypsin (15 min), followed by incubation in 8 µg/ml neuraminidase and 1 mM EDTA (15 min), followed by mechanical dispersion. Cell yields are ~55%, based on recovered DNA. By electron microscopy five types of secretory cells (somatotrophs, mammotrophs, thyrotrophs, gonadotrophs, and corticotrophs) plus endothelial and follicular cells can be identified and are morphologically well preserved up to 20 h after dissociation. Throughout this period, the cells incorporate linearly [3H]leucine into protein for up to 4 h at a rate 90% greater than hemipituitaries, and they synthesize, transport intracellularly, and release the two major pituitary secretory products, growth hormone and prolactin. Immediately after dissociation the cells' ability to respond to secretogogues (high K+ and dibutyryl cyclic AMP) is impaired, but after a 6–12-h culture period, the cells apparently recover and discharge 24% and 52%, respectively, of their content of prelabeled growth hormone over a 3-h period in response to these two secretogogues. This represents a stimulation of 109% and 470% over that released by cells incubated in control medium. The results demonstrate that function and morphologic integrity are preserved in this cell system. Therefore it is suitable for the study of various aspects of pituitary secretion and its control.  相似文献   
68.
We have investigated the nature and distribution of different populations of heparan sulfate proteoglycans (HSPGs) in several cell lines in culture. Clone 9 hepatocytes and NRK and CHO cells were biosynthetically labeled with 35SO4, and proteoglycans were isolated by DEAE-Sephacel chromatography. Heterogeneous populations of HSPGs and chondroitin/dermatan proteoglycans (CSPGs) were found in the media and cell layer extracts of all cultures. HSPGs were further purified from the media and cell layers and separated from CSPGs by ion exchange chromatography after chondroitinase ABC digestion. In all cell types, HSPGs were found both in the cell layers (20-70% of the total) as well as the medium. When the purified HSPG fractions were further separated by octyl-Sepharose chromatography, very little HSPG in the incubation media bound to the octyl-Sepharose, whereas 40-55% of that in the cell layers bound and could be eluted with 1% Triton X-100. This hydrophobic population most likely consists of membrane-intercalated HSPGs. Basement membrane-type HSPGs were identified by immunoprecipitation as a component (30-80%) of the unbound (nonhydrophobic) HSPG fraction. By immunofluorescence, basement membrane-type HSPGs were distributed in a reticular network in Clone 9 and NRK cell monolayers; by immunoelectron microscopy, these HSPGs were localized to irregular clumps of extracellular matrix located beneath and between cells. The cells did not produce a morphologically recognizable basement membrane layer under these culture conditions. When membrane-associated HSPGs were localized by immunoelectron microscopy, they were found in a continuous layer along the cell membrane of all cell types. The results demonstrate that two antigenically distinct populations of HSPG--an extracellular matrix and a membrane-intercalated population--are found at the surface of several different cultured cells lines; these populations can be distinguished from one another by differences in their distribution in the monolayers by immunocytochemistry and can be separated by hydrophobic chromatography; and basement membrane-type HSPGs are secreted and deposited in the extracellular matrix by cultured cells even though they do not produce a bona fide basement membrane-like layer.  相似文献   
69.
A 58-kD cis-Golgi protein has been identified by generating polyclonal antibodies against heavy (cis) Golgi subfractions. Total microsomes isolated from rat pancreatic homogenates were subfractionated to yield a rough microsomal fraction (B1) and three smooth membrane subfractions (B2-B4) enriched in cis-, middle, and trans-Golgi elements, respectively. The heavy (cis) subfraction, B2 (d = 1.17 g/ml), was fractionated by Triton X-114 phase separation, and the proteins recovered in the detergent phase were used to immunize rabbits. One of the anti-B2 antibodies obtained gave a "Golgi"-staining pattern when screened by immunofluorescence on normal rat kidney cells and mouse RPC 5.4 myeloma cells. In rat pancreatic exocrine cells the antibody reacted with the plasmalemma as well as elements in the Golgi region. By immunoelectron microscopy, the antigen recognized by anti-B2 IgG was found to be restricted to cis-Golgi elements in myeloma cells where it was concentrated in the fenestrated cis-most cisterna and in some of the tubules and vesicles located along the cis face of the Golgi complex. By immunoprecipitation and immunoblotting, the anti-B2 IgG exclusively recognized a 58-kD protein in myeloma cells. The anti-B2 IgG reacted with several proteins in solubilized pancreatic B2 membranes, including a 58-kD protein, but affinity-purified anti-58-kD IgG reacted exclusively with the 58-kD protein. These results suggest that the 58-kD protein is a specific component of cis-Golgi membranes.  相似文献   
70.
We have examined the distribution of mannose-6-phosphate (Man6P) receptors (215 kD) for lysosomal enzymes in cultured Clone 9 hepatocytes at various times after the addition or removal of lysosomotropic weak bases (chloroquine or NH4Cl). Our previous studies demonstrated that after treatment with these agents, Man6P receptors are depleted from their sorting site in the Golgi complex and accumulate in dilated vacuoles that could represent either endosomes or lysosomes (Brown, W. J., E. Constantinescu, and M. G. Farquhar, 1984, J. Cell Biol., 99:320-326). We have now investigated the nature of these vacuoles by labeling NH4Cl-treated cells simultaneously with anti-Man6P receptor IgG and lysosomal or endosomal markers. The structures in which the immunolabeled receptors are found were identified as endosomes based on the presence of endocytic tracers (lucifer yellow and cationized ferritin). The lysosomal membrane marker, lgp120, was associated with a separate population of swollen vacuoles that did not contain detectable Man6P receptors. When cells were allowed to recover from weak base treatment, the receptors reappeared in the Golgi cisternae of most cells (approximately 90%) within approximately 20 min, indicating that as the intra-endosomal pH drops and lysosomal enzymes dissociate, the entire population of receptors rapidly recycles to Golgi cisternae. When NH4Cl-treated cells were allowed to endocytose Man6P, a competitive inhibitor of lysosomal enzyme binding, the receptors also recycled to the Golgi cisternae, suggesting that lysosomal enzymes can dissociate from the receptors under these conditions (high pH + presence of competitive inhibitor). From these results it can be concluded that the intracellular itinerary of the 215-kD Man6P receptor involves its cycling via coated vesicles between the Golgi complex and endosomes, ligand dissociation is both necessary and sufficient to trigger the recycling of Man6P receptors to the Golgi complex, and endosomes rather than secondary lysosomes represent the junction where endocytosed material and primary lysosomes carrying receptor-bound lysosomal enzymes meet.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号