首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   7篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   10篇
  2013年   12篇
  2012年   6篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1995年   1篇
  1994年   5篇
排序方式: 共有102条查询结果,搜索用时 109 毫秒
71.
The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease.  相似文献   
72.
73.
Electrospinning is a versatile technology for the fabrication of nanofibrous matrixes to regenerate defects. This study aims to develop a functionalized and electroconductive polymeric matrix to improve rat bone marrow mesenchymal stem cell adhesion, proliferation, and differentiation. Herein, the influence of the chemical composition of the substrate on homogeneous modification of the surface with mussel-inspired polydopamine (PDA) is focused. Accordingly, the deposition of PDA on the surface was proved by Fourier transform infrared spectroscopy. Morphologies of the scaffolds demonstrated homogeneous decoration of the polyvinyl alcohol (PVA)/polyurethane (PU)-polyaniline (PANI) matrixes with PDA, while a lower density of mussel-inspired polymer was observed in bare PU-PANI constructs. Although uniform and dense precipitation of PDA reduced conductivity of scaffolds 1.2 times compared with the samples with a low density of the PDA, 1.1 and 1.2 times enhancement in tensile strength and Young's modulus, respectively, were the strength of the applied process, especially in bone tissue engineering area. Contact angle measurements demonstrated about two times reduction in measured values, which shows improvement in hydrophilicity of PDA-modified PVA/PU-PANI fibers compared with PDA-coated PU-PANI ones. Swelling ratio and mass loss ratio calculations revealed enhancement in measured values as a function of homogeneous and dense coating, which arise from hydrophilicity of the polymeric substrate. The bioactivity test indicated that a dense layer of PDA strongly supports formations of hydroxyapatite-like crystals. Moreover, homogeneous decoration of conductive matrixes with PDA showed suitable cell viability, adhesion, and spreading while cell-scaffolds interactions improved under electrical stimulation. Higher expression of alkaline phosphatase and secretion of Collagen I under the electrical field proved the applicability of modified electroconductive scaffolds for further preclinical and clinical studies to introduce as a reconstructive bone substitute.  相似文献   
74.

Background

We have demonstrated that vaccination with pDNA encoding cysteine proteinase Type II (CPA) and Type I (CPB) with its unusual C-terminal extension (CTE) can partially protect BALB/c mice against cutaneous leishmanial infection. Unfortunately, this protection is insufficient to completely control infection without booster injection. Furthermore, in developing vaccines for leishmaniasis, it is necessary to consider a proper adjuvant and/or delivery system to promote an antigen specific immune response. Solid lipid nanoparticles have found their way in drug delivery system development against intracellular infections and cancer, but not Leishmania DNA vaccination. Therefore, undefined effect of cationic solid lipid nanoparticles (cSLN) as an adjuvant in enhancing the immune response toward leishmanial antigens led us to refocus our vaccine development projects.

Methodology/Principal Findings

Three pDNAs encoding L. major cysteine proteinase type I and II (with or without CTE) were formulated by cSLN. BALB/c mice were immunized twice by 3-week interval, with cSLN-pcDNA-cpa/b, pcDNA-cpa/b, cSLN-pcDNA-cpa/b-CTE, pcDNA-cpa/b-CTE, cSLN, cSLN-pcDNA and PBS. Mice vaccinated with cSLN-pcDNA-cpa/b-CTE showed significantly higher levels of parasite inhibition related to protection with specific Th1 immune response development, compared to other groups. Parasite inhibition was determined by different techniques currently available in exploration vacciation efficacy, i.e., flowcytometry on footpad and lymph node, footpad caliper based measurements and imaging as well as lymph node microtitration assay. Among these techniques, lymph node flowcytometry was found to be the most rapid, sensitive and easily reproducible method for discrimination between the efficacy of vaccination strategies.

Conclusions/Significance

This report demonstrates cSLN''s ability to boost immune response magnitude of cpa/cpb-CTE cocktail vaccination against leishmaniasis so that the average parasite inhibition percent could be increased significantly. Hence, cSLNs can be considered as suitable adjuvant and/or delivery systems for designing third generation cocktail vaccines.  相似文献   
75.
In situ gelling systems are very attractive for pharmaceutical applications due to their biodegradability and simple manufacturing processes. The synthesis and characterization of thermosensitive poly(D,L-lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA triblock copolymers as in situ gelling matrices were investigated in this study as a drug delivery system. Ring-opening polymerization using microwave irradiation was utilized as a novel technique, and the results were compared with those using a conventional method of polymerization. The phase transition temperature and the critical micelle concentration (CMC) of the copolymer solutions were determined by differential scanning calorimetry and spectrophotometry, respectively. The size of the micelles was determined with a light scattering method. In vitro drug release studies were carried out using naltrexone hydrochloride and vitamin B12 as model drugs. The rate and yield of the copolymerization process via microwave irradiation were higher than those of the conventional method. The copolymer structure and concentration played critical roles in controlling the sol-gel transition temperature, the CMC, and the size of the nanomicelles in the copolymer solutions. The rate of drug release could be modulated by the molecular weight of the drugs, the concentration of the copolymers, and their structures in the formulations. The amount of release versus time followed zero-order release kinetics for vitamin B12 over 25 days, in contrast to the Higuchi modeling for naltrexone hydrochloride over a period of 17 days. In conclusion, PLGA-PEG1500-PLGA with a lactide-to-glycolide ratio of 5:1 is an ideal system for the long-acting, controlled release of naltrexone hydrochloride and vitamin B12.  相似文献   
76.
The aim of this study was to determine any possible, baclofen–lactose Maillard reaction products. Granules and tablets of baclofen and lactose were prepared and maintained in heat ovens for a certain time period. The effects of lactose type, addition of magnesium stearate, and water were monitored. Heated lactose and baclofen were analyzed using reverse-phase HPLC. Liquid chromatography tandem mass spectroscopy revealed nominal mass values consistent with baclofen–lactose, early-stage Maillard reaction condensation products (ESMRP). Multiple reaction monitoring confirmed the presence of ESMRP as well. FTIR analysis proved the formation of imine bond. The results indicated that baclofen undergoes a Maillard-type reaction with lactose.  相似文献   
77.
A series of benzotriazole phenyldifluoromethylphosphonic acids were found to be potent PTP-1B inhibitors. Molecular modeling on the X-ray crystal structure of the lead structure led to the design of potent PTP-1B inhibitors that show moderate selectivity against TC-PTP, a very closely related protein tyrosine phosphatase.  相似文献   
78.
Applied Microbiology and Biotechnology - Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori,...  相似文献   
79.
The 663 amino acid Mu transposase protein is absolutely required for Mu DNA transposition. Mutant proteins were constructed in vitro in order to locate regions of transposase that may be important for the catalysis of DNA transposition. Deletions in the A gene, which encodes the transposase, yielded two stable mutant proteins that aid in defining the end-specific DNA-binding domain. Linker insertion mutagenesis at eight sites in the Mu A gene generated two proteins, FF6 and FF14 (resulting from two and four amino acid insertions, respectively, at position 408), which were thermolabile for DNA binding in vitro at 43°C. However, transposition activity in vivo was severely reduced for all mutant proteins at 37°C, except those with insertions at positions 328 and 624. In addition, site-specific mutagenesis was performed to alter tyrosine 414, which is situated in a region that displays amino acid homology to the active sites of a number of nicking/closing enzymes. Tyrosine 414 may reside within an important, yet non-essential, site of transposase, as an aspartate-substituted protein had a drastically reduced frequency of transposition, while the remaining mutants yielded reduced, but substantial, frequencies of Mu transposition in vivo.  相似文献   
80.
Safflower (Carthamus tinctorius L.) plants were affected by a severe root rot disease caused by Phytophthora drechsleri and Fusarium solani in Isfahan province of Iran during 2005–2007. Disease incidence was more than 30% in severely infected fields. Twenty-one safflower genotypes, including six local cultivars and 15 internal pure lines were evaluated for their resistance to root rot disease in laboratory and greenhouse conditions. Safflower seedlings were evaluated for lesion length on infected roots in laboratory, as well percentage of live seedlings in greenhouse. The results indicated a high negative correlation between lesion length on roots and percentage of live seedlings. The most resistant and susceptible genotypes to P. drechsleri were identified as pure line Karaj row 12 (KW12) and cultivar Koseh with lesion lengths of 10.01 and 15.51?mm on roots and 45.60 and 18.00% live seedlings, respectively. The most resistant genotype to F. solani was identified as pure line KW11 with a lesion length of 9.31?mm on roots as well 62.80% live seedlings. The most susceptible genotypes were identified as cultivar Koseh and pure lines KW2 and KW3 with lesion lengths of 13.29, 12.72 and 12.13?mm on roots and 25.60, 28.40 and 28.40% live seedlings, respectively. The most resistant genotypes to both P. drechsleri and F. solani were identified as pure lines KW15 and KW9 with a 55.40% live seedlings. The most susceptible genotypes were cultivars Koseh, Goldasht and pure lines KW6, KW3 and KW2 with 35.40, 35.40, 35.40, 37.60 and 37.60% live seedlings in greenhouse, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号