首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   35篇
  国内免费   2篇
  410篇
  2021年   6篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   19篇
  2012年   22篇
  2011年   19篇
  2010年   13篇
  2009年   3篇
  2008年   18篇
  2007年   15篇
  2006年   12篇
  2005年   12篇
  2004年   10篇
  2003年   9篇
  2002年   13篇
  2001年   16篇
  2000年   12篇
  1999年   11篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1992年   9篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   11篇
  1984年   10篇
  1983年   2篇
  1982年   4篇
  1980年   3篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   7篇
  1972年   5篇
  1971年   4篇
  1969年   2篇
  1968年   3篇
  1967年   5篇
  1966年   3篇
排序方式: 共有410条查询结果,搜索用时 15 毫秒
31.

Introduction  

The presence of anti-topoisomerase I (topo I) antibodies is a classic scleroderma (SSc) marker presumably associated with a unique clinical subset. Here the clinical association of anti-topo I was reevaluated in unselected patients seen in a rheumatology clinic setting.  相似文献   
32.
33.
34.
For the first time the scanning electron microscope was used to compare developmental changes in scorpion embryos and the first and second stadia. In the buthid species of this study, Centruroides vittatus, and all other scorpions, the newborn climb up on their mother's back and remain there without feeding for several days. At this location, they undergo their first molt and in a few days they disperse, fully capable of foraging in the terrestrial environment. The results here support earlier suggestions that the first stadium (pronymph) is a continuation and extension of embryological development. The first molt results in a nymph with exoskeletal features much like those in the adult. In the first molt the metasoma becomes relatively longer, and the sting (aculeus) becomes sharp and functional. The metasomal segments are modified for dorsal flexion and sting use. The embryos and the pronymphs have spiracles that open into an invagination near the posterior margin of flap-like abdominal plates in segments 4-7 of the ventral mesosoma. The second instars have spiracles that lead to book lungs farther anterior in sternites. Tubular legs with cylindrical segments in embryos and pronymphs become more sculptured and oval in the transverse plane. Each leg in the pronymph has a blunt, cup-shaped tip while distal claws (ungues, dactyl) are present in the second instar and subsequent stages. There are some sharp bristles and primordial sensilla in the pronymphs, but the second stadium has adult-like surface features: rows of knobs or granulations (carinae), serrations on the inner surfaces of cheliceral and pedipalpal claws, filtering hairs at the mouthparts, peg sensilla on the pectines, and mechano- and chemoreceptor sensilla on the body and appendages. Scorpion embryos and pronymphs have some structures like fossil scorpions thought to have been aquatic. There is a gradual development of features that appear to be terrestrial adaptations. Evidence is provided for the formation of the sternum from third and fourth leg coxal primordia and possibly from the first abdominal segment. This study is the first to provide evidence for a forward shift of the gonopore along with other structures in the anterior abdomen.  相似文献   
35.
Wang KH  Majewska A  Schummers J  Farley B  Hu C  Sur M  Tonegawa S 《Cell》2006,126(2):389-402
Cortical representations of visual information are modified by an animal's visual experience. To investigate the mechanisms in mice, we replaced the coding part of the neural activity-regulated immediate early gene Arc with a GFP gene and repeatedly monitored visual experience-induced GFP expression in adult primary visual cortex by in vivo two-photon microscopy. In Arc-positive GFP heterozygous mice, the pattern of GFP-positive cells exhibited orientation specificity. Daily presentations of the same stimulus led to the reactivation of a progressively smaller population with greater reactivation reliability. This adaptation process was not affected by the lack of Arc in GFP homozygous mice. However, the number of GFP-positive cells with low orientation specificity was greater, and the average spike tuning curve was broader in the adult homozygous compared to heterozygous or wild-type mice. These results suggest a physiological function of Arc in enhancing the overall orientation specificity of visual cortical neurons during the post-eye-opening life of an animal.  相似文献   
36.
37.
1. Rapid expansion and intensification of anthropogenic activities in the 20th century has caused profound changes in freshwater assemblages. Unfortunately, knowledge of the extent and causes of species loss (SL) is limited due to the lack of reliable historical data. An unusual data set allows us to compare changes in the most sensitive of aquatic insect orders, the Plecoptera, at some 170 locations in the Czech Republic between two time periods, 1955–1960 and 2006–2010. Historical data (1890–1911) on assemblages of six lowland rivers allow us to infer even earlier changes. 2. Regional stonefly diversity decreased in the first half of the 20th century. Streams at lower altitudes lost a substantial number of species, which were never recovered. In the second half of the century, large‐scale anthropogenic pressure caused SL in all habitats, leading to a dissimilarity of contemporary and previous assemblages. The greatest changes were found at sites affected by organic pollution and a mixture of organic pollution and channelisation or impoundment. Colonisation of new habitats was observed in only three of the 80 species evaluated. 3. Species of moderate habitat specialisation and tolerance to organic pollution were most likely to be lost. Those with narrow specialisations in protected habitats were present in both historical and contemporary collections. 4. Contemporary assemblages are the consequence of more than a 100 years of anthropogenic impacts. In particular, streams at lower altitude and draining intensively exploited landscapes host a mere fragment of the original species complement. Most stonefly species are less frequently present than before, although their assemblages remain almost intact in near‐natural mountain streams. Our analyses demonstrate dramatic restriction of species ranges and, in some cases, apparent changes in altitudinal preference throughout the area.  相似文献   
38.
In the embryonic zebra fish as early as 40 hr after fertilization, the Mauthner cells (M-cells) initiate an escape response, elicited by tactile-vibrational stimulation. The initial part of this behavior is similar to the acoustic startle reflex seen during the larval stage which begins at 96 hr. The embryonic response is directional and is followed by a series of strong tail flexures which are more pronounced than those during swimming. In the embryo the M-cell fired at the beginning of the response and rarely fired again during subsequent contractions; in our experiments the M-cell did not mediate iterative movements of the tail. The M-cell system is probably involved in evoked hatching behavior, as the tactile response is sufficient to rupture the egg membrane and allow the animal to escape. The M-cell sometimes fired spontaneously, which suggests that it might function also in spontaneous hatching behavior which occurs in the absence of phasic stimulation. At 48 hr the M-cell has morphologically mature synapses on its soma and dendrites, but its cytoplasm is relatively undifferentiated; it has few oriented neurofilaments and no distinct axon hillock. During these stages the extracellular M-spike is longer in duration and smaller in amplitude than at later times when the cell is more mature morphologically. Our data suggest that long-term inhibitory control of the M-cell system begins to function at about the time of hatching. At this time the cell is morphologically mature and is richly supplied with synaptic endings over its soma and dendrites.  相似文献   
39.
Light and transmission electron microscopy were used to study the development of new book lung lamellae in juvenile and adult spiders (Parasteatoda tepidariorum). As hypothesized earlier in a study of embryos, mesenchyme cells dispersed throughout the opisthosoma (EMT) are a likely source of precursor epithelial cells (MET) for the new lamellae. The precursor cells in juveniles and adults continue many of the complex activities observed in embryos, e.g., migration, alignment, lumen formation, thinning, elongation, and secretion of the cuticle of air channel walls and trabeculae. The apicobasal polarity of precursor cells for new channels is apparently induced by the polarity pattern of precursor cells of channels produced earlier. Thus, new air and hemolymph channels extend and continue the alternating pattern of older channels. At sites more distant from the spiracle and atrium, new channels are usually produced by the mode II process (intracellular alignment and merging of vesicles). These air channels have bridging trabeculae and are quite stable in size throughout their length. At sites closer to the spiracle and atrium, new channels may be produced by mode I (coalescence of merocrine vesicle secretion). This raises the hypothesis that structural and functional differences in mode I and II channels and differing oxygen and fluid conditions with distance from the spiracle and atrium determine the mode of formation of new channels. Observations herein support an earlier hypothesis that there is some intercellular apical/apical and basal/basal affinity among the opposed surfaces of aligned precursor cells. This results in the alternating pattern of air channels at the apical and hemolymph channels at the basal cell surfaces.  相似文献   
40.
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat‐insulin‐promoter‐Cre (RIP‐Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT. Genetic ablation of APPL2 in RIP‐Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP‐Cre neurons, inactivation of VMH AMPK, or treatment with a β3‐adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP‐Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP‐Cre neurons, in which the APPL2–AMPK signaling axis is crucial for this defending mechanism to cold and obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号