首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   10篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   14篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1991年   1篇
  1981年   1篇
  1966年   2篇
排序方式: 共有105条查询结果,搜索用时 437 毫秒
11.
During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix-degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP-dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., beta3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.  相似文献   
12.
An exocellular proteinase synthesized by the geophilic dermatophyte Trichophyton vanbreuseghemii has been purified and characterized. The fungus obtained from soil in Iran was cultivated in modified Czapek–Dox liquid medium containing 0.1% bacteriological peptone and 1% glucose as the nitrogen and carbon sources. Partial purification of the proteinase was accomplished by (NH4)2SO4 precipitation, followed by ion exchange chromatography. Analysis of the enzyme by SDS-PAGE revealed a single polypeptide chain with an apparent molecular mass of 37 kDa. Proteinase activity was optimum at pH 8, but remained high in the range of pH 7–11. Moreover, the partially purified enzyme presented a keratinolytic activity as evidenced by the keratin azure test. The inhibition profile and the good activity of the enzyme towards the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide suggested that it belonged to the chymotrypsin/subtilisin group of serine proteinases. The keratinolytic properties of T. vanbreuseghemii suggest that this fungus may be an alternative for the recycling of industrial keratinic wastes.  相似文献   
13.
Chun TH  Hotary KB  Sabeh F  Saltiel AR  Allen ED  Weiss SJ 《Cell》2006,125(3):577-591
White adipose tissue (WAT) serves as the primary energy depot in the body by storing fat. During development, fat cell precursors (i.e., preadipocytes) undergo a hypertrophic response as they mature into lipid-laden adipocytes. However, the mechanisms that regulate adipocyte size and mass remain undefined. Herein, we demonstrate that the membrane-anchored metalloproteinase, MT1-MMP, coordinates adipocyte differentiation in vivo. In the absence of the protease, WAT development is aborted, leaving tissues populated by mini-adipocytes which render null mice lipodystrophic. While MT1-MMP preadipocytes display a cell autonomous defect in vivo, null progenitors retain the ability to differentiate into functional adipocytes during 2-dimensional (2-D) culture. By contrast, within the context of the 3-dimensional (3-D) ECM, normal adipocyte maturation requires a burst in MT1-MMP-mediated proteolysis that modulates pericellular collagen rigidity in a fashion that controls adipogenesis. Hence, MT1-MMP acts as a 3-D-specific adipogenic factor that directs the dynamic adipocyte-ECM interactions critical to WAT development.  相似文献   
14.
15.
Acyl-homoserine lactone (HSL) quorum sensing molecules play an important role in regulation of virulence gene expression in Pseudomonas aeruginosa. Here, we show that 3O-C(12)-HSL can disrupt barrier integrity in human epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER), increased paracellular flux, reduction in the expression and distribution of ZO-1 and occludin, and reorganization of F-actin. P. aeruginosa 3O-C(12)-HSL activate p38 and p42/44 kinases, and inhibition of these kinases partly prevented 3O-C(12)-HSL-induced changes in TER, paracellular flux and expression of occludin and ZO-1. These findings demonstrate that P. aeruginosa 3O-C(12)-HSL can modulate tight junction integrity of Caco-2 cells.  相似文献   
16.

Background

The CUPID (Cultural and Psychosocial Influences on Disability) study was established to explore the hypothesis that common musculoskeletal disorders (MSDs) and associated disability are importantly influenced by culturally determined health beliefs and expectations. This paper describes the methods of data collection and various characteristics of the study sample.

Methods/Principal Findings

A standardised questionnaire covering musculoskeletal symptoms, disability and potential risk factors, was used to collect information from 47 samples of nurses, office workers, and other (mostly manual) workers in 18 countries from six continents. In addition, local investigators provided data on economic aspects of employment for each occupational group. Participation exceeded 80% in 33 of the 47 occupational groups, and after pre-specified exclusions, analysis was based on 12,426 subjects (92 to 1018 per occupational group). As expected, there was high usage of computer keyboards by office workers, while nurses had the highest prevalence of heavy manual lifting in all but one country. There was substantial heterogeneity between occupational groups in economic and psychosocial aspects of work; three- to five-fold variation in awareness of someone outside work with musculoskeletal pain; and more than ten-fold variation in the prevalence of adverse health beliefs about back and arm pain, and in awareness of terms such as “repetitive strain injury” (RSI).

Conclusions/Significance

The large differences in psychosocial risk factors (including knowledge and beliefs about MSDs) between occupational groups should allow the study hypothesis to be addressed effectively.  相似文献   
17.
Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13−/−, Mmp8−/−, Mmp2−/−, Mmp9−/−, Mmp14−/− and Mmp16−/− mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14−/− or Mmp16−/− fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14−/− fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.In the postnatal state, fibroblasts are normally embedded in a self-generated three-dimensional connective tissue matrix composed largely of type I collagen, the major extracellular protein found in mammals (13). Type I collagen not only acts as a structural scaffolding for the associated mesenchymal cell populations but also regulates gene expression and cell function through its interactions with collagen binding integrins and discoidin receptors (2, 4). Consistent with the central role that type I collagen plays in defining the structure and function of the extracellular matrix, the triple-helical molecule is resistant to almost all forms of proteolytic attack and can display a decades-long half-life in vivo (46). Nonetheless, fibroblasts actively remodel type I collagen during wound healing, inflammation, or neoplastic states (2, 713).To date type I collagenolytic activity is largely confined to a small subset of fewer than 10 proteases belonging to either the cysteine proteinase or matrix metalloproteinase (MMP)2 gene families (4, 1418). As all collagenases are synthesized as inactive zymogens, complex proteolytic cascades involving serine, cysteine, metallo, and aspartyl proteinases have also been linked to collagen turnover by virtue of their ability to mediate the processing of the pro-collagenases to their active forms (13, 15, 19). After activation, each collagenase can then cleave native collagen within its triple-helical domain, thus precipitating the unwinding or “melting” of the resulting collagen fragments at physiologic temperatures (4, 15). In turn, the denatured products (termed gelatin) are susceptible to further proteolysis by a broader class of “gelatinases” (4, 15). Collagen fragments are then either internalized after binding to specific receptors on the cell surface or degraded to smaller peptides with potent biological activity (2024).Previous studies by our group as well as others have identified MMPs as the primary effectors of fibroblast-mediated collagenolysis (20, 25, 26). Interestingly, adult mouse fibroblasts express at least six MMPs that can potentially degrade type I collagen, raising the possibility of multiple compensatory networks that are designed to preserve collagenolytic activity (25). Four of these collagenases belong to the family of secreted MMPs, i.e. MMP-13, MMP-8, MMP-2, and MMP-9, whereas the other two enzymes are members of the membrane-type MMP subgroup, i.e. MMP-14 (MT1-MMP) and MMP-16 (MT3-MMP) (13, 2729). From a functional perspective, the specific roles that can be assigned to secreted versus membrane-anchored collagenases remain undefined. As such, fibroblasts were isolated from either wild-type mice or mice harboring loss-of-function deletions in each of the major secreted and membrane-anchored collagenolytic genes, and the ability of the cells to degrade type I collagen was assessed. Herein, we demonstrate that fibroblasts mobilize either secreted or membrane-anchored MMPs to effectively degrade type I collagen in qualitatively and quantitatively distinct fashions. However, under conditions where fibroblasts use either secreted and membrane-anchored MMPs to exert quantitatively equivalent collagenolytic activity, only MT1-MMP plays a required role in supporting a collagen-invasive phenotype. These data establish a new paradigm wherein secreted collagenases are functionally limited to bulk collagenolytic processes, whereas MT1-MMP uniquely arms the fibroblast with a focalized degradative activity that mediates subjacent collagenolysis as well as invasion.  相似文献   
18.
19.
Immunoradiometrical determinations of beta-endorphin (beta-EP) levels in 29 discrete brain regions from a series of victims of "Sudden Infant Death Syndrome" yielded a uniformly low levels profile in various areas of telencephalon, thalamus, pons, cerebellum and medulla oblongata. This low levels profile was interrupted by intermediate and high beta-EP levels in the midbrain and in two diencephalic zones. This study provides, for the first time, a comprehensive, neurochemically determined regional profile of beta-EP levels in the brain of the human infant.  相似文献   
20.
Biomass-based decontamination methods are among the most interesting water treatment techniques. In this study, 2 cyanobacterial strains, Nostoc punctiforme A.S/S4 and Chroococcidiopsis thermalis S.M/S9, isolated from hot springs containing high concentrations of radium (226Ra), were studied to be associated with removal of radionuclides (238U and 226Ra) and heavy metal cadmium (Cd) from aqueous solutions. The adsorption equilibrium data was described by Langmuir and Freundlich isotherm models. Kinetic studies indicated that the sorption of 3 metals followed pseudo-second-order kinetics. Effects of biomass concentration, pH, contact time, and initial metal concentration on adsorption were also investigated. Fourier-transform infrared spectroscopy revealed active binding sites on the cyanobacterial biomass. The obtained maximum biosorption capacities were 630 mg g?1 and 37 kBq g?1 for 238U and 226Ra for N. punctiforme and 730 mg g?1 and 55 kBq g?1 for C. thermalis. These 2 strains showed maximum binding capacity 160 and 225 mg g?1, respectively for Cd adsorption. These results suggest that radioactivity resistant cyanobacteria could be employed as an efficient adsorbent for decontamination of multi-component, radioactive and industrial wastewater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号